期刊论文详细信息
BMC Microbiology
Differential efficiency in exogenous DNA acquisition among closely related Salmonella strains: implications in bacterial speciation
Shu-Lin Liu2  Ye Feng1  Gui-Rong Liu4  Randal N Johnston3  Da-Ling Zhu5  Ang Li6  Yong-Guo Li7  Xia Deng4  Yang Li4  Xu-Yao Wang4  Lu Yu4  Le Tang2  Hong-Xia Bao2 
[1] Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China;Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada;Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada;HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China;College of Pharmacy of Daqing Campus, Harbin Medical University, Harbin, China;Department of Biostatistics, Harbin Medical University, Harbin, China;Department of Infectious Diseases of First Affiliated Hospital, Harbin Medical University, Harbin, China
关键词: Transformation;    Transduction;    Salmonella;    Homologous recombination;    Bacterial speciation;   
Others  :  1140939
DOI  :  10.1186/1471-2180-14-157
 received in 2013-07-18, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

Acquisition of exogenous genetic material is a key event in bacterial speciation. It seems reasonable to assume that recombination of the incoming DNA into genome would be more efficient with higher levels of relatedness between the DNA donor and recipient. If so, bacterial speciation would be a smooth process, leading to a continuous spectrum of genomic divergence of bacteria, which, however, is not the case as shown by recent findings. The goal of this study was todetermine if DNA transfer efficiency is correlated with the levels of sequence identity.

Results

To compare the relative efficiency of exogenous DNA acquisition among closely related bacteria, we carried out phage-mediated transduction and plasmid-mediated transformation in representative Salmonella strains with different levels of relatedness. We found that the efficiency was remarkably variable even among genetically almost identical bacteria. Although there was a general tendency that more closely related DNA donor-recipient pairs had higher transduction efficiency, transformation efficiency exhibited over a thousand times difference among the closely related Salmonella strains.

Conclusion

DNA acquisition efficiency is greatly variable among bacteria that have as high as over 99% identical genetic background, suggesting that bacterial speciation involves highly complex processes affected not only by whether beneficial exogenous DNA may exist in the environment but also the “readiness” of the bacteria to accept it.

【 授权许可】

   
2014 Bao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325154836444.pdf 639KB PDF download
Figure 3. 33KB Image download
Figure 2. 54KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Groisman EA, Saier MH Jr, Ochman H: Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 1992, 11(4):1309-1316.
  • [2]Ochman H, Bergthorsson U: Genome evolution in enteric bacteria. Curr Opin Genet Dev 1995, 5(6):734-738.
  • [3]Feng Y, Liu S-L: Pathogenic Salmonella. In Omics, Microbial Modeling, and Technologies for Food-borne Pathogens. Edited by Yan X, Juneja V, Fratamico PM, Smith J. Lancaster, Pennsylvania, USA: DEStech Publications, Inc; 2011:43-68.
  • [4]Ochman H, Wilson AC: Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 1987, 26(1–2):74-86.
  • [5]Doolittle RF, Feng DF, Tsang S, Cho G, Little E: Determining divergence times of the major kingdoms of living organisms with a protein clock. Science (New York, NY) 1996, 271(5248):470-477.
  • [6]Feng DF, Cho G, Doolittle RF: Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A 1997, 94(24):13028-13033.
  • [7]Popoff MY, Le Minor L: Antigenic formulas of the Salmonella serovars. In WHO Collaborating Centre for Reference and Research on Salmonella. 8th edition. Paris: Pasteur Institute; 2001.
  • [8]Popoff MY, Le Minor LE: Genus XXXIII. Salmonella. In Bergey’s Manual of Systematic Bacteriology, Volume 2. 2nd edition. Edited by Brenner DJ, Krieg NR, Stanley JT. New York: Springer; 2005:764-799.
  • [9]Liu SL, Hessel A, Sanderson KE: Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci U S A 1993, 90(14):6874-6878.
  • [10]Liu SL, Schryvers AB, Sanderson KE, Johnston RN: Bacterial phylogenetic clusters revealed by genome structure. J Bacteriol 1999, 181(21):6747-6755.
  • [11]McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856.
  • [12]Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science (New York, NY) 1997, 277(5331):1453-1474.
  • [13]McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, Harkins CR, Wang C, Nguyen C, Berghoff A, Elliott G, Kohlberg S, Strong C, Du F, Carter J, Kremizki C, Layman D, Leonard S, Sun H, Fulton L, Nash W, Miner T, Minx P, Delehaunty K, Fronick C, Magrini V, et al.: Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 2004, 36(12):1268-1274.
  • [14]Deng W, Liou SR, Plunkett G 3rd, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR: Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 2003, 185(7):2330-2337.
  • [15]Feng Y, Johnston RN, Liu GR, Liu SL: Genomic comparison between Salmonella Gallinarum and Pullorum: differential pseudogene formation under common host restriction. PLoS One 2013, 8(3):e59427.
  • [16]Zhao EY, Bao HX, Tang JL, Zou QH, Liu WQ, Zhu DL, Chin J, Dong YY, Li YG, Cao FL, Poppe C, Sanderson KE, Johnston RN, Zhou D, Liu GR, Liu SL: Genomic comparison of Salmonella typhimurium DT104 with non-DT104 strains. Mol Genet Genomics 2013, 288(11):549-557.
  • [17]Liu SL, Sanderson KE: Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci U S A 1995, 92(4):1018-1022.
  • [18]Liu SL, Sanderson KE: Genomic cleavage map of Salmonella typhi Ty2. J Bacteriol 1995, 177(17):5099-5107.
  • [19]Kothapalli S, Nair S, Alokam S, Pang T, Khakhria R, Woodward D, Johnson W, Stocker BA, Sanderson KE, Liu SL: Diversity of Genome Structure in Salmonella enterica Serovar Typhi Populations. J Bacteriol 2005, 187(8):2638-2650.
  • [20]Nair S, Alokam S, Kothapalli S, Porwollik S, Proctor E, Choy C, McClelland M, Liu SL, Sanderson KE: Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. J Bacteriol 2004, 186(10):3214-3223.
  • [21]Cooke FJ, Brown DJ, Fookes M, Pickard D, Ivens A, Wain J, Roberts M, Kingsley RA, Thomson NR, Dougan G: Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol 2008, 190(24):8155-8162.
  • [22]Le Minor L: Genus III. Salmonella. In Bergey's Manual of Systematic Bacteriology. Volume 1. Edited by Krieg NR. Baltimore: Williams & Wilkins; 1984::427-458.
  • [23]Feng Y, Xu HF, Li QH, Zhang SY, Wang CX, Zhu DL, Cao FL, Li YG, Johnston RN, Zhou J, Liu GR, Liu SL: Complete genome sequence of Salmonella enterica serovar pullorum RKS5078. J Bacteriol 2012, 194(3):744.
  • [24]Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan S, Sanderson KE, Johnston RN, Liu SL: The genome of Salmonella enterica serovar gallinarum: distinct insertions/deletions and rare rearrangements. J Bacteriol 2005, 187(14):4720-4727.
  • [25]Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, Barron A, Layton A, Pickard D, Kingsley RA, Bignell A, Clark L, Harris B, Ormond D, Abdellah Z, Brooks K, Cherevach I, Chillingworth T, Woodward J, Norberczak H, Lord A, Arrowsmith C, Jagels K, Moule S, Mungall K, Sanders M, et al.: Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 2008, 18(10):1624-1637.
  • [26]Mayr E: Systematics and the Origin of Species from the Viewpoint of a Zoologist. New York: Columbia University Press; 1942.
  • [27]Mayr E: What is a species, and what is not? Philos Trans R Soc Lond B Biol Sci 1996, 63:262-277.
  • [28]Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG: Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 2000, 182(4):1016-1023.
  • [29]Roberts MS, Cohan FM: The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 1993, 134(2):401-408.
  • [30]Vulic M, Dionisio F, Taddei F, Radman M: Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 1997, 94(18):9763-9767.
  • [31]Tang JL, Li Y, Deng X, Johnston RN, Liu GR, Liu SL: Defining natural species of bacteria: clear-cut genomic boundaries revealed by a turning point in nucleotide sequence divergence. BMC Genomics 2013, 14:489.
  • [32]Liu GR, Rahn A, Liu WQ, Sanderson KE, Johnston RN, Liu SL: The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol 2002, 184(10):2626-2633.
  • [33]Chen F, Liu WQ, Eisenstark A, Johnston RN, Liu GR, Liu SL: Multiple genetic switches spontaneously modulating bacterial mutability. BMC Evol Biol 2010, 10:277.
  • [34]Liu SL, Sanderson KE: Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci U S A 1996, 93(19):10303-10308.
  • [35]Liu SL, Sanderson KE: A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol 1992, 174(5):1662-1672.
  • [36]Liu SL: Physical mapping of Salmonella genomes. Methods Mol Biol 2007, 394:39-58.
  • [37]Sanderson KE, Hessel A, Liu S-L, Rudd KE: The genetic map of Salmonella typhimurium, Edition III. In Esherichia coli and Salmonella. Volume 2. Edited by Neidhardt FC. Washington, D. C: ASM Press; 1996::1903-1999.
  • [38]Liu SL, Hessel A, Sanderson KE: The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol 1993, 175(13):4104-4120.
  • [39]Neal BL, Brown PK, Reeves PR: Use of Salmonella phage P22 for transduction in Escherichia coli. J Bacteriol 1993, 175(21):7115-7118.
  文献评价指标  
  下载次数:9次 浏览次数:8次