期刊论文详细信息
BMC Neuroscience
Spatial distribution of insulin-like growth factor binding protein-2 following hypoxic-ischemic injury
Murat Digicaylioglu2  David F Jimenez1  Betty B Alajajian1  Lindsey H Williams3  Shane Sprague1  Elif Isgor1  Lauren Fletcher1 
[1]Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
[2]Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
[3]School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
关键词: Intranasal administration;    Insulin-like growth factor-I;    Insulin-like growth factor binding protein-2;    Neuroprotection;    Ischemia;    Stroke;   
Others  :  1122667
DOI  :  10.1186/1471-2202-14-158
 received in 2012-12-18, accepted in 2013-12-10,  发布年份 2013
PDF
【 摘 要 】

Background

Insulin-like growth factor binding protein-2 (IGFBP-2) regulates the bioavailability, transportation, and localization of insulin-like growth factor-I (IGF-I), an effective neuroprotectant in animal stroke models especially when administered intranasally. Therefore, determining IGFBP-2′s endogenous distribution in the normal and ischemic brain is essential in maximizing the neuroprotective potential of the intranasal IGF-I treatment approach. However, current data on IGFBP-2 is limited to mRNA and in situ hybridization studies. The purpose of this study was to determine if there are any changes in IGFBP-2 protein levels and distribution in ischemic brain and also to determine if IGFBPs play a role in the transportation of intranasally administered IGF-I into the brain.

Results

Using an in vitro approach, we show that ischemia causes changes in the distribution of IGFBP-2 in primary cortical neurons and astrocytes. In addition, we show using the transient middle cerebral artery occlusion (MCAO) model in mice that there is a significant increase in IGFBP-2 levels in the stroke penumbra and core after 72 h. This correlated with an overall increase in IGF-I after stroke, with the highest levels of IGF-I in the stroke core after 72 h. Brain sections from stroke mice indicate that neurons and astrocytes located in the penumbra both have increased expression of IGFBP-2, however, IGFBP-2 was not detected in microglia. We used binding competition studies to show that intranasally administered exogenous IGF-I uptake into the brain is not receptor mediated and is likely facilitated by IGFBPs.

Conclusions

The change in protein levels indicates that IGFBP-2 plays an IGF-I-dependent and -independent role in the brain’s acute (neuroprotection) and chronic (tissue remodeling) response to hypoxic-ischemic injury. Competition studies indicate that IGFBPs may have a role in rapid transportation of exogenous IGF-I from the nasal tissue to the site of injury.

【 授权许可】

   
2013 Fletcher et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214024743479.pdf 1499KB PDF download
Figure 7. 28KB Image download
Figure 6. 60KB Image download
Figure 5. 62KB Image download
Figure 4. 52KB Image download
Figure 3. 114KB Image download
Figure 2. 58KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Iadecola C, Anrather J: Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 2011, 14(11):1363-1368.
  • [2]Fonarow GC, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Grau-Sepulveda MV, Olson DM, Hernandez AF, Peterson ED, Schwamm LH: Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation 2011, 123(7):750-758.
  • [3]Fletcher L, Kohli S, Sprague SM, Scranton RA, Lipton SA, Parra A, Jimenez DF, Digicaylioglu M: Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. J Neurosurg 2009, 111(1):164-170.
  • [4]Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd: Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 2001, 187(1–2):91-97.
  • [5]Liu XF, Fawcett JR, Thorne RG, Frey WH 2nd: Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett 2001, 308(2):91-94.
  • [6]Belayev L, Busto R, Zhao W, Fernandez G, Ginsberg MD: Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res 1999, 833(2):181-190.
  • [7]Lo EH, Singhal AB, Torchilin VP, Abbott NJ: Drug delivery to damaged brain. Brain Res Brain Res Rev 2001, 38(1–2):140-148.
  • [8]Hanson LR, Frey WH, Hanson LR, Frey WH II: Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 2008, 9(3):S5.
  • [9]Danielyan L, Schafer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B, Verleysdonk S, Ayturan M, et al.: Intranasal delivery of cells to the brain. Eur J Cell Biol 2009, 88(6):315-324.
  • [10]Balin BJ, Broadwell RD, Salcman M, el-Kalliny M: Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol 1986, 251(2):260-280.
  • [11]Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd: Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004, 127(2):481-496.
  • [12]Guan J, Bennet L, Gluckman PD, Gunn AJ: Treatment in animal models. Endocr Dev 2005, 9:31-43.
  • [13]Russo VC, Gluckman PD, Feldman EL, Werther GA: The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005, 26(7):916-943.
  • [14]Federico G, Maremmani C, Cinquanta L, Baroncelli GI, Fattori B, Saggese G: Mucus of the human olfactory epithelium contains the insulin-like growth factor-I system which is altered in some neurodegenerative diseases. Brain Res 1999, 835(2):306-314.
  • [15]Suzuki Y, Takeda M: Expression of insulin-like growth factor family in the rat olfactory epithelium. Anat Embryol (Berl) 2002, 205(5–6):401-405.
  • [16]Guan J, Williams CE, Skinner SJ, Mallard EC, Gluckman PD: The effects of insulin-like growth factor (IGF)-1, IGF-2, and des-IGF-1 on neuronal loss after hypoxic-ischemic brain injury in adult rats: evidence for a role for IGF binding proteins. Endocrinology 1996, 137(3):893-898.
  • [17]Jones JI, Clemmons DR: Insulin-like growth-factors and their binding-proteins - biological actions. Endocr Rev 1995, 16(1):3-34.
  • [18]Chesik D, De Keyser J, Wilczak N: Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: Implications in multiple sclerosis. Cytokine Growth Factor Rev 2007, 18(3–4):267-278.
  • [19]Bondy CA, Cheng CM: Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 2004, 490(1–3):25-31.
  • [20]Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M, Klempt M, Singh K, Williams C, Nikolics K: A role for Igf-1 in the rescue of Cns neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun 1992, 182(2):593-599.
  • [21]Klempt ND, Klempt M, Gunn AJ, Singh K, Gluckman PD: Expression of insulin-like growth factor-binding protein 2 (IGF-BP 2) following transient hypoxia-ischemia in the infant rat brain. Brain Res Mol Brain Res 1992, 15(1–2):55-61.
  • [22]Beilharz EJ, Russo VC, Butler G, Baker NL, Connor B, Sirimanne ES, Dragunow M, Werther GA, Gluckman PD, Williams CE, et al.: Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury. Brain Res Mol Brain Res 1998, 59(2):119-134.
  • [23]O’Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002, 39(1):85-97.
  • [24]Fisher M: The ischemic penumbra: a new opportunity for neuroprotection. Cerebrovasc Dis 2006, 21(Suppl 2):64-70.
  • [25]Wang L, Zhang Z, Wang Y, Zhang R, Chopp M: Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004, 35(7):1732-1737.
  • [26]Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, et al.: Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009, 40(12):e647-e656.
  • [27]Yamashita T, Deguchi K, Sawamoto K, Okano H, Kamiya T, Abe K: Neuroprotection and neurosupplementation in ischaemic brain. Biochem Soc Trans 2006, 34(Pt 6):1310-1312.
  • [28]Carlsson-Skwirut C, Lake M, Hartmanis M, Hall K, Sara VR: A comparison of the biological activity of the recombinant intact and truncated insulin-like growth factor 1 (IGF-1). Biochim Biophys Acta 1989, 1011(2–3):192-197.
  • [29]Crescioli C, Villari D, Forti G, Ferruzzi P, Petrone L, Vannelli GB, Adorini L, Salerno R, Serio M, Maggi M: Des (1–3) IGF-I-stimulated growth of human stromal BPH cells is inhibited by a vitamin D3 analogue. Mol Cell Endocrinol 2002, 198(1–2):69-75.
  • [30]Rotwein P, Burgess SK, Milbrandt JD, Krause JE: Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA 1988, 85(1):265-269.
  • [31]Andersson IK, Edwall D, Norstedt G, Rozell B, Skottner A, Hansson HA: Differing expression of insulin-like growth factor I in the developing and in the adult rat cerebellum. Acta Physiol Scand 1988, 132(2):167-173.
  • [32]Werther GA, Abate M, Hogg A, Cheesman H, Oldfield B, Hards D, Hudson P, Power B, Freed K, Herington AC: Localization of insulin-like growth factor-I mRNA in rat brain by in situ hybridization–relationship to IGF-I receptors. Mol Endocrinol 1990, 4(5):773-778.
  • [33]Guan J, Bennet L, Gluckman PD, Gunn AJ: Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 2003, 70(6):443-462.
  • [34]Digicaylioglu M, Garden G, Timberlake S, Fletcher L, Lipton SA: Acute neuroprotective synergy of erythropoietin and insulin-like growth factor I. Proc Natl Acad Sci USA 2004, 101(26):9855-9860.
  • [35]Belayev L, Busto R, Zhao W, Ginsberg MD: Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 1996, 739(1–2):88-96.
  • [36]Hoeflich A, Reisinger R, Lahm H, Kiess W, Blum WF, Kolb HJ, Weber MM, Wolf E: Insulin-like growth factor-binding protein 2 in tumorigenesis: protector or promoter? Cancer Res 2001, 61(24):8601-8610.
  • [37]Mackay KB, Loddick SA, Naeve GS, Vana AM, Verge GM, Foster AC: Neuroprotective effects of insulin-like growth factor-binding protein ligand inhibitors in vitro and in vivo. J Cereb Blood Flow Metab 2003, 23(10):1160-1167.
  • [38]Paciaroni M, Caso V, Agnelli G: The concept of ischemic penumbra in acute stroke and therapeutic opportunities. Eur Neurol 2009, 61(6):321-330.
  • [39]Yao H, Yoshii N, Akira T, Nakahara T: Reperfusion-induced temporary appearance of therapeutic window in penumbra after 2 h of photothrombotic middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2009, 29(3):565-574.
  • [40]Zhu W, Fan Y, Frenzel T, Gasmi M, Bartus RT, Young WL, Yang GY, Chen Y: Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke 2008, 39(4):1254-1261.
  • [41]Ploughman M, Granter-Button S, Chernenko G, Attwood Z, Tucker BA, Mearow KM, Corbett D: Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res 2007, 1150:207-216.
  • [42]Hayakawa K, Nakano T, Irie K, Higuchi S, Fujioka M, Orito K, Iwasaki K, Jin G, Lo EH, Mishima K, et al.: Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2010, 30(4):871-882.
  • [43]Yan YP, Lang BT, Vemuganti R, Dempsey RJ: Galectin-3 mediates post-ischemic tissue remodeling. Brain Res 2009, 1288:116-124.
  • [44]Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158(3):1021-1029.
  • [45]Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, Gao Q, Shen LH, Zhang J, Lu M, et al.: Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 2005, 49(3):407-417.
  • [46]Kooijman R, Sarre S, Michotte Y, De Keyser J: Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke 2009, 40(4):e83-e88.
  • [47]Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003, 301(5634):839-842.
  • [48]Kazanis I, Bozas E, Philippidis H, Stylianopoulou F: Neuroprotective effects of insulin-like growth factor-I (IGF-I) following a penetrating brain injury in rats. Brain Res 2003, 991(1–2):34-45.
  • [49]Alajajian BB, Fletcher L, Isgor E, Jimenez DF, Digicaylioglu M: IGF-I regulated phosphorylation and translocation of PDK-1 in neurons. Neuroreport 2009, 20(6):579-583.
  • [50]Zhao G, Flavin MP: Differential sensitivity of rat hippocampal and cortical astrocytes to oxygen-glucose deprivation injury. Neurosci Lett 2000, 285(3):177-180.
  • [51]Kermer P, Digicaylioglu MH, Kaul M, Zapata JM, Krajewska M, Stenner-Liewen F, Takayama S, Krajewski S, Lipton SA, Reed JC: BAG1 over-expression in brain protects against stroke. Brain Pathol 2003, 13(4):495-506.
  文献评价指标  
  下载次数:30次 浏览次数:14次