期刊论文详细信息
BMC Genomics
Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation
Candace H. Haigler2  Brian E. Scheffler4  Z. Jeffrey Chen3  Qingxin Song3  Xueying Guan3  Danny C. Alexander5  Mary V. Duke4  Gyoungju Nah3  John R. Tuttle1 
[1] Department of Crop Science, North Carolina State University, Raleigh 27695, NC, USA;Department of Plant and Microbial Biology, North Carolina State University, Raleigh 27695, NC, USA;Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin 78712, TX, USA;USDA ARS Genomics and Bioinformatics Research Unit, Stoneville 38776, MS, USA;Metabolon Inc, Durham 27713, NC, USA
关键词: RNA Seq transcriptomics;    Metabolomics;    Reactive oxygen species;    Lignification;    Gossypium;    Cotton fiber development;    Cell wall synthesis;    Cell elongation;    Ascorbate;   
Others  :  1219270
DOI  :  10.1186/s12864-015-1708-9
 received in 2014-12-23, accepted in 2015-06-19,  发布年份 2015
PDF
【 摘 要 】

Background

The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber.

Results

Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA.

Conclusions

The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.

【 授权许可】

   
2015 Tuttle et al.

【 预 览 】
附件列表
Files Size Format View
20150715163106789.pdf 2276KB PDF download
Fig. 12. 36KB Image download
Fig. 11. 25KB Image download
Fig. 10. 57KB Image download
Fig. 9. 82KB Image download
Fig. 8. 228KB Image download
Fig. 7. 202KB Image download
Fig. 6. 80KB Image download
Fig. 5. 28KB Image download
Fig. 4. 15KB Image download
Fig. 3. 87KB Image download
Fig. 2. 67KB Image download
Fig. 1. 56KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

【 参考文献 】
  • [1]Haigler CH, Betancur L, Stiff MR, Tuttle JR. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci. 2012; 3:104.
  • [2]Wendel JF, Flagel LE, Adams KL. Jeans, genes, and genomes: cotton as a model for studying polyploidy. In: Polyploidy and genome evolution. Soltis PS, Soltis DE, editors. Springer Berlin Heidelberg, Heidelberg; 2012: p.181-207.
  • [3]Wendel JF. New world tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci U S A. 1989; 86(11):4132-6.
  • [4]Grover C, Grupp K, Wanzek R, Wendel J. Assessing the monophyly of polyploid Gossypium species. Plant Syst Evol. 2012; 298(6):1177-83.
  • [5]Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M, Goynes Jr WR, Edwards JV, Hunter L, McAlister DD. Cotton fiber chemistry and technology. CRC Press, Boca Raton; 2010.
  • [6]Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol. 2009; 50(7):1364-81.
  • [7]Chen X, Guo W, Liu B, Zhang Y, Song X, Cheng Y, Zhang L, Zhang T. Molecular mechanisms of fiber differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS ONE. 2012; 7(1):e30056.
  • [8]Lacape J, Claverie M, Vidal RO, Carazzolle MF, Pereira GAG, Ruiz M, Pré M, Llewellyn D, Al-Ghazi Y, Jacobs J. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS ONE. 2012; 7(11):e48855.
  • [9]Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol. 2013; 162(1):86-95.
  • [10]Avci U, Pattathil S, Singh B, Brown VL, Hahn MG, Haigler CH. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS ONE. 2013; 8(2):e56315.
  • [11]Meinert MC, Delmer DP. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol. 1977; 59(6):1088-97.
  • [12]Seagull RW. Cytoskeletal involvement in cotton fiber growth and development. Micron. 1993; 24(6):643-60.
  • [13]Hsieh Y, Honik E, Hartzell M. A developmental study of single fiber strength: greenhouse grown SJ-2 Acala cotton. Text Res J. 1995; 65(2):101-12.
  • [14]Hinchliffe DJ, Meredith WR, Delhom CD, Thibodeaux DP, Fang DD. Elevated growing degree days influence transition stage timing during cotton fiber development resulting in increased fiber-bundle strength. Crop Sci. 2011; 51(4):1683-92.
  • [15]Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH. Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Int Plant Biol. 2010; 52(2):205-20.
  • [16]Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA. Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol. 2004; 54(6):911-29.
  • [17]Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006; 22:53-78.
  • [18]Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010; 61(1):263-89.
  • [19]Cassan-Wang H, Goue N, Saidi MN, Legay S, Sivadon P, Goffner D, Grima-Pettenati J. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front Plant Sci. 2013; 4:189.
  • [20]Hussey SG, Mizrachi E, Creux NM, Myburg AA. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Front Plant Sci. 2013; 4:325.
  • [21]Ehlting J, Mattheus N, Aeschliman D, Li E, Hamberger B, Cullis I, Zhuang J, Kaneda M, Mansfield S, Samuels L, Ritland K, Ellis B, Bohlmann J, Douglas C. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J. 2005; 42(5):618-40.
  • [22]Zhao Q, Dixon RA. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci. 2011; 16(4):227-33.
  • [23]Wang N, Liu W, Peng Y. Gradual transition zone between cell wall layers and its influence on wood elastic modulus. J Mater Sci. 2013; 48(14):5071-84.
  • [24]Martin LK, Haigler CH. Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose. 2004; 11(3–4):339-49.
  • [25]Singh B, Avci U, Eichler Inwood SE, Grimson MJ, Landgraf J, Mohnen D, Sorensen I, Wilkerson CG, Willats WG, Haigler CH. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol. 2009; 150(2):684-99.
  • [26]Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. Plant Cell Physiol. 2002; 43(4):411-8.
  • [27]Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Xyloglucan breakdown during cotton fiber development. J Plant Physiol. 2003; 160(11):1411-4.
  • [28]Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007; 17(5):422-34.
  • [29]Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Botany. 2012;2012. ArticleID 217037. doi.org/10.1155/2012/217037.
  • [30]Zhang D, Zhang T, Guo W. Effect of H2O2 on fiber initiation using fiber retardation initiation mutants in cotton (Gossypium hirsutum). J Plant Physiol. 2010;167(5):393–9.
  • [31]Mei W, Qin Y, Song W, Li J, Zhu Y. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics. 2009;36(3):141–50.
  • [32]Li H, Qin Y, Pang Y, Song W, Mei W, Zhu Y. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol. 2007; 175(3):462-71.
  • [33]Gottula J, Price K, Allen RD, Mullinix B, Wright RJ. Efficacy of antioxidant overproduction on fiber growth and maturation in cotton. Crop Sci. 2009; 49(5):1733-41.
  • [34]Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 1999; 119(3):849-58.
  • [35]Yang Y, Bian S, Yao Y, Liu J. Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res. 2008; 7(11):4623-37.
  • [36]Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci U S A. 2002; 99(17):11109-14.
  • [37]Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel L, Hu G, Wendel JF. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLOS GENET. 2008; 4(2):e25.
  • [38]Chaudhary B, Hovav R, Rapp R, Verma N, Udall JA, Wendel JF. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev. 2008; 10(5):567-82.
  • [39]Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol. 2010; 8:139.
  • [40]Zhou M, Sun G, Sun Z, Tang Y, Wu Y. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development. J Proteomics. 2014; 105:74-84.
  • [41]Hu G, Koh J, Yoo M, Pathak D, Chen S, Wendel JF. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). Planta. 2014; 240(6):1237-51.
  • [42]Moller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007; 58:459-81.
  • [43]Jacques S, Ghesquière B, Van Breusegem F, Gevaert K. Plant proteins under oxidative attack. Proteomics. 2013; 13(6):932-40.
  • [44]Xiong Y, Contento AL, Nguyen PQ, Bassham DC. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007; 143(1):291-9.
  • [45]Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav. 2011; 6(5):709-11.
  • [46]Meyer AJ. The integration of glutathione homeostasis and redox signaling. J Plant Physiol. 2008; 165(13):1390-403.
  • [47]Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo M, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E et al.. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012; 492(7429):423-7.
  • [48]Guan X, Nah G, Song Q, Udall JA, Stelly DM, Chen ZJ. Transcriptome analysis of extant cotton progenitors revealed tetraploidization and identified genome-specific single nucleotide polymorphism in diploid and allotetraploid cotton. BMC Res Notes. 2014; 7(1):493.
  • [49]Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007; 2(1):5-7.
  • [50]Cacas J, Furt F, Le Guédard M, Schmitter J, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule J, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res. 2012; 51(3):272-99.
  • [51]Huang J, Jan C. Linoleamide, a brain lipid that induces sleep, increases cytosolic Ca 2+ levels in MDCK renal tubular cells. Life Sci. 2001; 68(9):997-1004.
  • [52]Aubert S, Choler P, Pratt J, Douzet R, Gout E, Bligny R. Methyl-beta-D-glucopyranoside in higher plants: accumulation and intracellular localization in Geum montanum L. leaves and in model systems studied by 13C nuclear magnetic resonance. J Exp Bot. 2004; 55(406):2179-89.
  • [53]Liu Q, Talbot M, Llewellyn DJ. Pectin methylesterase and pectin remodelling differ in the fibre walls of two gossypium species with very different fibre properties. PLoS ONE. 2013; 8(6):e65131.
  • [54]Komarova TV, Sheshukova EV, Dorokhov YL. Cell wall methanol as a signal in plant immunity. Front Plant Sci. 2014; 5:101.
  • [55]ElSayed A, Rafudeen M, Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 2014; 16(1):1-8.
  • [56]Fukuda H. Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol. 2000; 44(3):245-53.
  • [57]Wanjie SW, Welti R, Moreau RA, Chapman KD. Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids. 2005; 40(8):773-85.
  • [58]Eckardt NA. Oxylipin signaling in plant stress responses. Plant Cell. 2008; 20(3):495-7.
  • [59]Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell. 2007; 19(1):148-62.
  • [60]Delmer DP, Pear JR, Andrawis A, Stalker DM. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol Gen Genetics. 1995; 248(1):43-51.
  • [61]Brembu T, Winge P, Bones AM. The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in Arabidopsis. J Exp Bot. 2005; 56(419):2465-76.
  • [62]Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003; 422(6930):442-6.
  • [63]Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008; 319(5867):1241-4.
  • [64]Pelagio-Flores R, Ortiz-Castro R, Mendez-Bravo A, Macias-Rodriguez L, Lopez-Bucio J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol. 2011; 52(3):490-508.
  • [65]Shen Y, Lindemeyer AK, Gonzalez C, Shao XM, Spigelman I, Olsen RW, Liang J. Dihydromyricetin as a novel anti-alcohol intoxication medication. J Neurosci. 2012; 32(1):390-401.
  • [66]Forde BG. Glutamate signalling in roots. J Exp Bot. 2014; 65(3):779-87.
  • [67]Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL et al.. Exogenous gamma-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2 + -permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J Exp Bot. 2014; 65(12):3235-48.
  • [68]Jarvis MC. Cellulose biosynthesis: counting the chains. Plant Physiol. 2013; 163(4):1485-6.
  • [69]Lin L, Tang H, Compton RO, Lemke C, Rainville LK, Wang X, Rong J, Rana MK, Paterson A. Comparison analysis of Gossypium and Vitis genomes indicates genome duplication specific to the Gossypium lineage. Genomics. 2011; 97:313-20.
  • [70]Yin Y, Johns MA, Cao H, Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics. 2014; 15(1):260.
  • [71]Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG. A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci U S A. 2007; 104(20):8550-5.
  • [72]Liepman A, Wilkerson C, Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A. 2005; 102(6):2221-6.
  • [73]Rajasundaram D, Runavot J, Guo X, Willats WG, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS ONE. 2014; 9(11):e112168.
  • [74]Park S, Szumlanski AL, Gu F, Guo F, Nielsen E. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat Cell Biol. 2011; 13(8):973-80.
  • [75]Yoshikawa T, Eiguchi M, Hibara K, Ito J, Nagato Y. Rice slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. J Exp Bot. 2013; 64(7):2049-61.
  • [76]Haigler CH, Singh B, Wang G, Zhang D. Genomics of cotton fiber secondary wall deposition and cellulose biogenesis. In: Genetics and Genomics of Cotton, Plant Genetics and Genomics: Crops and Models 3 . Paterson AH, editor. Springer Science + Business Media, LLC, New York; 2009: p.385-417.
  • [77]Zhong R, Lee C, Ye Z. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 2010; 15(11):625-32.
  • [78]Haigler C, Zhang D, Wilkerson C. Biotechnological improvement of cotton fibre maturity. Physiol Plantarum. 2005; 124(3):285-94.
  • [79]Gong S, Huang G, Sun X, Qin L, Li Y, Zhou L, Li X. Cotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development. J Expt Bot. 2014; 65(15):4133-47.
  • [80]Han L, Li Y, Wang H, Wu X, Li C, Luo M, Wu S, Kong Z, Pei Y, Jiao G, Xia G. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell. 2013; 25(11):4421-38.
  • [81]Fan L, Shi W, Hu W, Hao X, Wang D, Yuan H, Yan H. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Int Plant Biol. 2009; 51(7):626-37.
  • [82]Lee Y, Alexander D, Wulff J, Olsen J. Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush. Metabolomics. 2014; 10(5):842-58.
  • [83]Fraser CM, Chapple C. The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book. 2011; 9:e0152.
  • [84]Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol. 1998; 49(1):249-79.
  • [85]Kranner I, Birtić S, Anderson KM, Pritchard HW. Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Bio Med. 2006; 40(12):2155-65.
  • [86]Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005; 19(16):1855-60.
  • [87]Fry S. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J. 1998; 332:507-15.
  • [88]Dumville JC, Fry SC. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta. 2003; 217(6):951-61.
  • [89]Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem. 2011; 49(10):1244-9.
  • [90]Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta. 2010; 231(3):609-21.
  • [91]Van Aken O, Giraud E, Clifton R, Whelan J. Alternative oxidase: a target and regulator of stress responses. Physiol Plantarum. 2009; 137(4):354-61.
  • [92]Kim HJ, Tang Y, Moon HS, Delhom CD, Fang DD. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics. 2013; 14(1):889.
  • [93]Lisko KA, Aboobucker SI, Torres R, Lorence A. Engineering elevated Vitamin C in plants to improve their nutritional content, growth, and tolerance to abiotic stress. In: Phytochemicals—biosynthesis, function, and application. Jetter R, editor. Springer Science + Business Media, New York; 2014: p.109-28.
  • [94]Ruan YL, Xu SM, White R, Furbank RT. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol. 2004; 136(4):4104-13.
  • [95]Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP. AtTIP1; 3 and AtTIP5; 1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 2008; 582(29):4077-82.
  • [96]Wudick MM, Luu DT, Tournaire-Roux C, Sakamoto W, Maurel C. Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction. Plant Physiol. 2014; 164(4):1697-706.
  • [97]Park W, Scheffler BE, Bauer PJ, Campbell BT. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2010; 10:142.
  • [98]Cao J. The pectin lyases in Arabidopsis thaliana: evolution, selection, and expression profiles. PLoS ONE. 2012; 7(10):e46944.
  • [99]Senechal F, Wattier C, Rusterucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot. 2014; 65(18):5125-60.
  • [100]Wang H, Guo Y, Lv F, Zhu H, Wu S, Jiang Y, Li F, Zhou B, Guo W, Zhang T. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. Plant Mol Biol. 2010; 72(4–5):397-406.
  • [101]Lim E, Ashford DA, Hou B, Jackson RG, Bowles DJ. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng. 2004; 87(5):623-31.
  • [102]Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008; 147(3):1251-63.
  • [103]Olas B, Saluk-Juszczak J, Nowak P, Glowacki R, Bald E, Wachowicz B. Protective effects of D-glucaro 1, 4-lactone against oxidative/nitrative modifications of plasma proteins. Nutrition. 2007; 23(2):164-71.
  • [104]Sheldrake R, Boodley J. Cornell peat-like mixes for commercial plant growing. Coop Ext Info Bull. 1973;43. http://www. greenhouse.cornell.edu/crops/factsheets/peatlite.pdf webcite
  • [105]Saravitz CH, Downs RJ, Thomas JF. North Carolina State University Phytotron Procedural Manual. [http://. http://www. ncsu.edu/phytotron/manual.pdf webcite
  • [106]Hu G, Koh J, Yoo M, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol. 2013; 200(2):570-82.
  • [107]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18):3674-6.
  • [108]Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009; 81(16):6656-67.
  • [109]Yobi A, Wone BW, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant. 2013; 6(2):369-85.
  • [110]DeHaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminformatics. 2010; 2(1):9.
  • [111]Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008; 9(4):383-97.
  • [112]Evans A, Mitchell M, Dai H, DeHaven C. Categorizing ion-features in liquid chromatography/mass spectrometry metabolomics data. Metabolomics. 2012; 2:110.
  • [113]Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BW, Cushman JC. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell. 2011; 23(4):1231-48.
  • [114]Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, 1345 Maechler M, Magnusson A, Moeller S. gplots: various R programming tools for plotting data. http://cran. r-project.org/web/packages/gplots/index.html webcite
  • [115]Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 2011; 12:35.
  文献评价指标  
  下载次数:185次 浏览次数:31次