期刊论文详细信息
BMC Evolutionary Biology
Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
Marie-Laure Guillemin4  Florence Tellier2  Pilar A Haye3  Sylvain Faugeron1  Bernardo R Broitman1  Alejandro Montecinos4 
[1] Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile;Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile;Departamento de Biología Marina, Facultad de Ciencias del Mar & Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile;Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
关键词: Pleistocene glaciations;    Sister-species complex;    Parapatric distribution;    Red seaweed;    rbcL;    COI;    South East Pacific coast;    Phylogeography;   
Others  :  1141016
DOI  :  10.1186/1471-2148-12-97
 received in 2012-02-25, accepted in 2012-05-24,  发布年份 2012
PDF
【 摘 要 】

Background

The Chilean shoreline, a nearly strait line of coast expanding across 35 latitudinal degrees, represents an interesting region to assess historical processes using phylogeographic analyses. Stretching along the temperate section of the East Pacific margin, the region is characterized by intense geologic activity and has experienced drastic geomorphological transformations linked to eustatic and isostatic changes during the Quaternary. In this study, we used two molecular markers to evaluate the existence of phylogeographic discontinuities and detect the genetic footprints of Pleistocene glaciations among Patagonian populations of Mazzaella laminarioides, a low-dispersal benthic intertidal red seaweed that inhabits along ~3,700 km of the Chilean coastal rocky shore.

Results

Three main genetic lineages were found within M. laminarioides. They are distributed along the Chilean coast in strict parapatry. The deep divergence among lineages suggests that they could be considered putative genetic sibling species. Unexpectedly, genetic breaks were not strictly concordant with the biogeographic breaks described in the region. A Northern lineage was restricted to a broad transition zone located between 30°S and 33°S and showed signals of a recent bottleneck. The reduction of population size could be related to warm events linked to El Niño Southern Oscillation, which is known to cause massive seaweed mortality in this region. To the south, we propose that transient habitat discontinuities driven by episodic tectonic uplifting of the shoreline around the Arauco region (37°S-38°S); one of the most active forearc-basins in the South East Pacific; could be at the origin of the Central/South genetic break. The large beaches, located around 38°S, are likely to contribute to the lineages’ integrity by limiting present gene flow. Finally, the Southern lineage, occupies an area affected by ice-cover during the last glaciations. Phylogeny suggested it is a derived clade and demographic analyses showed the lineage has a typical signature of postglacial recolonization from a northern glacial refugium area.

Conclusions

Even if environmental adaptation could have strengthened divergence among lineages in M. laminarioides, low dispersal capacity and small population size are sufficient to generate phylogeographic discontinuities determined by genetic drift alone. Interestingly, our results confirm that seaweed population connectivity over large geographic scales does not rely only on dispersal capacity but also seem to depend highly on substratum availability and population density of the receiving locality.

【 授权许可】

   
2012 Montecinos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325191149988.pdf 1042KB PDF download
Figure 5. 61KB Image download
Figure 4. 16KB Image download
Figure 3. 38KB Image download
Figure 2. 118KB Image download
Figure 1. 87KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hurt C, Anker A, Knowlton N: A multilocus test of simultaneous divergence across the Isthmus of Panama using snapping shrimp in the genus Alpheus. Evolution 2009, 63:514-530.
  • [2]Ayre DJ, Minchinton TE, Perrin C: Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 2009, 18:1887-1903.
  • [3]Patarnello T, Volckaert FAM, Castilho R: Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Mol Ecol 2007, 18:4426-4444.
  • [4]Avise J: Phylogeography: the history and formation of species. Cambridge: Haward University Press; 2000.
  • [5]Dawson MN: Phylogeography in coastal marine animals: a solution from California? J Biogeogr 2001, 28:723-736.
  • [6]Kelly RP, Palumbi SR: Genetic structure among 50 species of the Northeastern Pacific rocky intertidal community. PLoS One 2010, 5:e8594.
  • [7]Hewitt G: Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc Lond B 2004, 359:183-195.
  • [8]Kuchta SR, Parks DS, Wake DB: Pronounced phylogeographic structure on a small spatial scale: Geomorphological evolution and lineage history in the salamander ring species Ensatina eschscholtzii in central coastal California. Mol Phylogenet Evol 2009, 50:240-255.
  • [9]Irwin DE, Irwin JH, Price TD: Ring species as bridges between microevolution and speciation. Genetica 2001, 112–113:223-243.
  • [10]Irwin DE: Phylogeographic breaks without geographic barriers to gene flow. Evolution 2002, 56:2383-2304.
  • [11]Neigel JE, Avise JC: Applications of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics 1993, 135:1209-1220.
  • [12]Gravilets S, Li H, Vose MD: Patterns of parapatric speciation. Evolution 2000, 54:1126-1134.
  • [13]Kuo CH, Avise JC: Phylogeographic breaks in low-dispersal species: the emergence of concordance among gene trees. Genetica 2005, 124:179-186.
  • [14]de Aguiar MAM, Baranger M, Baptestini EM, Kaufman L, Bar-Yam Y: Global patterns of speciation and diversity. Nature 2009, 460:384-387.
  • [15]Hoelzer GA, Drewers R, Meier J, Dourset R: Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences. PLoS Comput Biol 2008, 4:e1000126.
  • [16]Wares JP, Pringle JM: Drift by drift: effective population size is limited by advection. BMC Evol Biol 2008, 8:235.
  • [17]Santelices B: Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanography and Marine Biology: An Annual Review 1990, 28:177-276.
  • [18]Kinlan BP, Gaines SD: Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 2003, 84:2007-2020.
  • [19]Faugeron S, Valero M, Destombe C, Martínez EA, Correa JA: Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Rhodophyta). J Phycol 2001, 37:705-716.
  • [20]Engel CR, Destombe C, Valero M: Mating system and gene flow in the red seaweed Gracilaria gracilis: effects of haplo-diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. Heredity 2004, 92:289-298.
  • [21]Andreakis N, Kooistra WHCF, Procaccini G: High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Mol Ecol 2009, 18:212-226.
  • [22]Valero M, Destombe C, Mauger S, Ribout C, Engel CR, Daguin-Thiébaut C, Tellier F: Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cahiers de Biologie Marine 2011, 52:467-483.
  • [23]Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortés M, et al.: The Humboldt Current System of northern and central Chile. Oceanography and Marine Biology: An Annual Review 2007, 45:195-344.
  • [24]Montecino V, Lange CB: The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography 2009, 83:65-79.
  • [25]Saillard M, Hall SR, Audin L, Farber DS, Héral G, Martinod J, Regard V, Finkel RC, Bondoux F: Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be dating. Earth and Planetary Sciences Letters 2009, 277:50-63.
  • [26]Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ: The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 2002, 21:233-241.
  • [27]Camus P: Biogeografía marina de Chile continental. Revista Chilena de Historia Natural 2001, 74:587-617.
  • [28]McCulloch RD, Bentley MJ, Purves RS, Hulton NRJ, Sugden DE, Clapperton CM: Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 2000, 15:409-417.
  • [29]Macaya E, Zuccarello GC: Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 2010, 420:103-112.
  • [30]Sánchez R, Sepúlveda RD, Brante A, Cárdenas L: Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar Ecol Prog Ser 2011, 434:121-131.
  • [31]Fraser CI, Thiel M, Spencer HG, Waters JM: Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 2010, 10:203.
  • [32]Brante A, Fernandez M, Viard F: Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata(Calyptraeidae) along the southeastern Pacific coast. J Hered 2012. in press.
  • [33]Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M: Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol 2009, 53:679-693.
  • [34]Cárdenas L, Castilla JC, Viard F: A phylogeographic analysis across three biogeographic provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J Biogeogr 2009, 36:969-981.
  • [35]Marko PB, Hoffman JM, Emme SA, McGovern TM, Keever CC, Nicole Cox L: The 'Expansion-Contraction' model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 2010, 19:146-169.
  • [36]Wares J, Gaines S, Cunningham C: A comparative study of asymmetric migration events across a marine biogeographic boundary. Evolution 2001, 55:295-306.
  • [37]Maggs CA, Castilho R, Foltz D, Hensler C, Jolly MT, Kelly J, Olsen JL, Perez E, Stam WT, Vainola R, et al.: Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 2008, 89:S108-S122.
  • [38]Fraser CI, Hay CH, Spencer HG, Waters JM: Genetic and morphological analyses of the southern bull kelp Durvillaea antarctica (Phaeophyceae: Durvillaeales) in New Zealand reveal cryptic species. J Phycol 2009, 45:436-443.
  • [39]Ruzzante DE, Walde SJ, Cussac VE, Dalebout ML, Seibert J, Otrtubay S, Habits E: Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Mol Ecol 2006, 15:2949-2968.
  • [40]Zemlak TS, Habit EM, Walde SJ, Battini MA, Adams ED, Ruzzante DE: Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia. Mol Ecol 2008, 17:5049-5061.
  • [41]Xu J, Perez-Losada M, Jara CG, Crandall KA: Pleistocene glaciation leaves deep signature on the freshwater crab Aegla alacalufi in Chilean Patagonia. Mol Ecol 2009, 18:904-918.
  • [42]Vianna JA, Medina-Vogel G, Chehébar C, Sielfeld W, Olavarria C, Faugeron S: Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia? BMC Evol Biol 2011, 11:53.
  • [43]Nuñez JJ, Wood NK, Rabanal FE, Fontanella FM, Sites JW: Amphibian phylogeography in the Antipodes: Refugia and postglacial colonization explain mitochondrial haplotype distribution in the Patagonian frog Eupsophus calcaratus (Cycloramphidae). Mol Phylogenet Evol 2011, 58:343-352.
  • [44]Sérsic AN, Cosacov A, Cocucci AA, Johnson LA, Pozner R, Avila LJ, Sites JW, Morando M: Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 2011, 103:475-494.
  • [45]Hoffman A, Santelices B: Marine flora of central Chile. Santiago: Ediciones Universidad Catolica de Chile; 1997.
  • [46]Hannach G, Santelices B: Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Mar Ecol Prog Ser 1985, 22:291-303.
  • [47]Pugh PJA, Davenport J: Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. Journal of Experimental Marine Biology and Ecology 1997, 210:1-21.
  • [48]Marko PB: 'What's larvae got to do with it?' Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 2004, 13:597-611.
  • [49]Hoarau G, Coyer J, Veldsink J, Stam W, Olsen J: Glacial refugia and recolonisation pathways in the brown seaweed Fucus serratus. Mol Ecol 2007, 16:3606-3616.
  • [50]Saunders GW: Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B 2005, 360:1879-1888.
  • [51]Zuccarello GC, West JA: Phylogeography of the Bostrychia calliptera - B. pinnata complex (Rhodomelaceae, Rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia 2002, 41:49-60.
  • [52]Cho Y, Mower J, Qiu YL, Palmer J: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the USA 2004, 101:17741-17746.
  • [53]Hebert PDN, Ratnasingham S, De Waard JR: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B 2003, 270(Suppl):S96-S99.
  • [54]Robba L, Russell SJ, Barker GL, Brodie J: Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 2006, 93:1101-1108.
  • [55]Hughey JR, Hommersand MH: A molecular study of Mazzaella (Gigartinaceae, Rhodophyta) and morphological investigation of the splendens clade from Pacific North America. Phycologia 2010, 49:113-135.
  • [56]Wares JP: Community genetics in the Northwestern Atlantic intertidal. Mol Ecol 2002, 11:1131-1144.
  • [57]Pereyra RT, Bergström L, Kautsky L, Johannesson K: Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol Biol 2009, 9:70.
  • [58]Omland KE, Baker JM, Peters JL: Genetic signature of intermediate divergence: population history of Old and New World Holarctic ravens (Corvus corax). Mol Ecol 2006, 15:795-808.
  • [59]Funk DJ, Omland KE: Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics 2003, 34:397-423.
  • [60]McKay BD, Zink RM: The causes of mitochondrial DNA gene tree paraphyly in birds. Mol Phylogenet Evol 2010, 54:647-650.
  • [61]Fraser CI, Spencer HG, Waters JM: Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Mol Ecol 2009, 18:2287-2296.
  • [62]Coyer JA, Hoarau G, Costa JF, Hogerdijk B, Serrão EA, Billard E, Valero M, Pearson GA, Olsen JL: Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol Phylogenet Evol 2011, 58:283-296.
  • [63]Neiva J, Pearson G, Valero M, Serrão E: Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoides L. J Biogeogr 2012, 39:1167-1178.
  • [64]Fraser CI, Winter DJ, Spencer HG, Waters JM: Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Mol Phylogenet Evol 2010, 57:1301-1311.
  • [65]Tellier F, Tapia J, Faugeron S, Destombe C, Valero M: The Lessonia nigrescens species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J Phycol 2011, 47:894-903.
  • [66]Alveal K, Romo H, Valenzuela J: Consideraciones ecológicas de las regiones de Valparaíso y Magallanes. Revista de Biología Marina (Chile) 1973, 5:1-29.
  • [67]Meneses I, Santelices B: Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Revista Chilena de Historia Natural 2000, 73:615-623.
  • [68]Zakas C, Binford J, Navarrete SA, Wares JP: Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. Mar Ecol Prog Ser 2009, 394:165-177.
  • [69]Broitman BR, Navarrete SA, Smith F, Gaines SD: Geographic variation of southeastern Pacific intertidal communities. Mar Ecol Prog Ser 2001, 224:21-34.
  • [70]Navarrete S, Wieters A, Broitman B, Castilla J: Scales of benthic-pelagic coupling and the intensity of species interactions: from recruitment limitation to top down control. Proceedings of the National Academy of Sciences of the USA 2005, 102:18046-18051.
  • [71]Muñoz RC: Thermal cycle of surface winds over the subtropical southeast Pacific. J Geophys Res 2008, 113:D13107.
  • [72]Hormazabal S, Schaffer G, Leth O: Coastal transition zone off Chile. J Geophys Res 2004, 109:C01021.
  • [73]Tapia F, Navarrete SA, Castillo M, Menge B, Castilla JC, Largier J, Wieters EA, Broitman BL, Barth JA: Thermal indices of upwelling effects on inner-shelf habitats. Progress in Oceanography 2009, 83:278-287.
  • [74]Wieters EA, Broitman BR, Branch GM: Benthic community structure and spatiotemporal thermal regimes in two upwelling ecosystems: Comparisons between South Africa and Chile. Limnol Oceanogr 2009, 54:1060-1072.
  • [75]Garreaud RD, Vaille M, Compagnucci R, Marengo J: Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 281:180-195.
  • [76]Varela DA, Santelices B, Correa JA, Arroyo MK: Spatial and temporal variation of photosynthesis in intertidal Mazzaella laminarioides (Bory)Fredericq (Rhodophyta, Gigartinales). Journal of Applied Phycology 2006, 18:827-838.
  • [77]Martínez EA, Cárdenas L, Pinto R: Recovery and genetic diversity in the intertidal kelp Lessonia nigrescens 20 years after El Niño 1982/83. J Phycol 2003, 39:504-508.
  • [78]Melnick D, Bookhagen B, Strecker MR, Echtler HP: Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. Journal of Geophysical Research 2009, 114:B01407.
  • [79]Folguera A, Orts D, Spagnuolo M, Vera ER, Litvak V, Sagripanti L, Ramos ME, Ramos VA: A review of Late Cretaceous to Quaternary palaeogeography of the southern Andes. Biol J Linn Soc 2011, 103:250-268.
  • [80]Darwin C: The Voyage of the Beagle: Charles Darwin's Journal of Researches. London, UK: Piguin Books; 1839.
  • [81]Castilla JC: Earthquake-caused coastal uplift and its effect on rocky intertidal kelp communities. Science 1988, 242:440-443.
  • [82]Castilla JC, Manriquez PH, Camaño A: Effects of rocky shore coseismic uplift and the 2010 Chilean mega-earthquake on intertidal biomarker species. Mar Ecol Prog Ser 2010, 418:17-23.
  • [83]Fraser CI, Nikula R, Spencer HG, Waters JM: Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proceedings of the National Academy of Sciences of the USA 2009, 106:649-655.
  • [84]Valero M, Engel C, Billot C, Kloareg B, Destombe C: Concepts and issues of population genetics in seaweeds. Cahiers de Biologie Marine 2001, 42:53-62.
  • [85]Waters JM: Competitive exclusion: phylogeography's 'elephant in the room'? Mol Ecol 2011, 20:4388-4394.
  • [86]Saunders GW: Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase-chain reaction-friendly DNA. J Phycol 1993, 29:251-254.
  • [87]Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by Krawetz S, Misener S. Totowac: Humana Press; 2000:365-386.
  • [88]Hommersand MH, Fredericq S, Freshwater DW: Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales, Rhodophyta) based on sequence analysis of rbcL. Botanica Marina 1994, 37:193-203.
  • [89]Fredericq S, Lopez-Bautista J: Characterization and phylogenetic position of the red alga Besa papillaeformis Setchell: an example of progenetic heterochrony? Constancea 2002., 83
  • [90]McCarthy C: Chromas, Version 1.41. Brisbane, Queensland: Griffith University; 1997.
  • [91]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 2011, 28(10):2731-2739.
  • [92]Excoffier L, Lisher H: Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:56.
  • [93]Nei M (Ed): Molecular Evolutionary Genetics. New York, NY, USA: Columbia University Press; 1987.
  • [94]Nei M, Li WH: Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 1979, 76:5260-5273.
  • [95]STATISTICA Tulsa, Oklahoma, USA: StatSoft Inc;
  • [96]Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.
  • [97]Rousset F: Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145:1219-1228.
  • [98]Bandelt HJ, Forster P, Röhl A: Median-Joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [99]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
  • [100]Fu Y-X: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147:915-925.
  • [101]Roger AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992, 9:552-569.
  • [102]Excoffier L: Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 2004, 13:853-864.
  • [103]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:213.
  • [104]Jobb G, Von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 2004, 4:18.
  • [105]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogeny. Bioinformatics 2001, 17:754-755.
  • [106]Hommersand MH, Fredericq S, Freshwater W, Hughey J: Recent developments in the systematic of the Gigartinaceae (Gigartinales, Rhodophyta) based on rbcL sequence analysis and morphological evidence. Phycological Research 1999, 47:139-151.
  • [107]Posada D, Crandall KA: MODELTEST; testing the model of DNA substitution. Bioinformatics Application Note 1998, 14:817-818.
  • [108]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.
  • [109]Kimura M: A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  • [110]Kamiya M, Zuccarello GC, West JA: Phylogeography of Calaglossa leprieurii and related species (Delesseriaceae, Rhodophyta) based on the rbcL gene sequences. The Japanese Journal of Phycology 2004, 52:147-151.
  文献评价指标  
  下载次数:65次 浏览次数:59次