| BMC Research Notes | |
| Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database | |
| Guohao He1  Channapatna S Prakash1  Yongli Zhao1  | |
| [1] Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, 36088, USA | |
| 关键词: Cultivated peanut; Polymorphism; Motif; SSR; | |
| Others : 1166129 DOI : 10.1186/1756-0500-5-362 |
|
| received in 2012-03-30, accepted in 2012-06-25, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut.
Findings
We compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased.
Conclusions
The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders.
【 授权许可】
2012 Zhao et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150416041047962.pdf | 665KB | ||
| Figure 1. | 110KB | Image |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Kochert G, Stalker HT, Gimenes M, Galgaro SL, Lopes CR, Moore K: RFLP and cytological evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 1996, 83:1282-1291.
- [2]Yuksel B, Paterson AH: Construction and characterization of a peanut HindIII BAC library. Theor Appl Genet 2005, 111(4):630-639.
- [3]Guimarães PM, Garsmeur O, Proite K, Leal-Bertioli SCM, Seijo G, Chaine C, Bertioli DJ, D’Hont A: BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. BMC Plant Biol 2008, 8:14. BioMed Central Full Text
- [4]Luo M, Dang P, Guo BZ, He GH, Holbrook C, Bausher MG, Lee RD: Generation of Expressed Sequenced tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 2005, 45:346-353.
- [5]Proite K, Leal-Bertioli SC, Bertioli DJ, Moretzsohn MC, da Silva FR, Martins NF, Guimaraes PM: ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 2007, 7:7. BioMed Central Full Text
- [6]Guo BZ, Chen XP, Hong YB, Liang XQ, Dang P, Brenneman T, Holbrook C, Culbreath A: Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genomics 2009.
- [7]Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S: Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breeding 2011.
- [8]Halward TM, Stalker HT, Kochert G: Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 1993, 87:379-384.
- [9]Burow MD, Simpson CE, Starr JL, Paterson AH: Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.) broadening the gene pool of a monophyletic Improving Groundnut Farmers' Incomes and Nutrition through Innovation and Technology Enhancement polyploidy species. Genetics 2001, 159:823-837.
- [10]Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ: A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 2005, 111(6):1060-1071.
- [11]Moretzsohn MC, Barbosa AVG, Alves-freitas DMT, Teizeira C, Leal-Bertioli SCM, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA: A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 2009, 9:40. BioMed Central Full Text
- [12]Hong YB, Liang XQ, Chen XP, Liu HY, Zhou GY, Li SX, Wen SJ: Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agricultural Sci in China 2008, 7(8):915-921.
- [13]Hong YB, Chen XP, Liang XQ, Liu HY, Zhou GY, Li SX, Wen SJ, Holbrook CC, Guo BZ: A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Bology 2010, 10:17. BioMed Central Full Text
- [14]Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishramurthy L, Aruma R, Nigam SN, Moss BJ, Seetha K, Ravi K, He GH, Knapp SJ, Hoisington DA: The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 2009, 118((4):729-739.
- [15]Fonceka D, Hodo-Abalo T, Rivallan R, Faye I, Ndoye M, Ndoye O, Favero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF: Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 2009, 9:103. BioMed Central Full Text
- [16]Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK: Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 2011, 122:1119-1132.
- [17]Qin HD, Feng SP, Chen C, Guo YF, Knapp S, Culbreath A, He GH, Wang ML, Zhang XY, Holbrook CC, Ozias-Akins P, Liang XQ, Guo BZ: An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 2011.
- [18]Wang H, Penmetsa RV, Yuan M, Gong LM, Zhao YL, Guo BZ, Farmer AD, Rosen BD, Gao JL, Isobe S, Bertioli DJ, Varshney RK, Cook DR, He GH: Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 2012, 12:10. BioMed Central Full Text
- [19]Kochert G, Halward T, Branch WD, Simpson CE: RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 1991, 81:565-570.
- [20]Halward TM, Stalker HT, LaRue E, Kochert G: Use of single-primer DNA amplification in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 1992, 18:315-325.
- [21]Paik-Ro OG, Smith RL, Knauft DA: Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 1992, 84:201-208.
- [22]Subramanian V, Gurtu S, Rao RCN, Nigam SN: Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 2000, 43(4):656-660.
- [23]Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S: Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 1999, 39:1243-1247.
- [24]He GH, Prakash CS: Evaluation of genetic relationship among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol 2001, 48:347-352.
- [25]Palmieri DA, Hoshino AA, Bravo JP, Lopes CR, Gimenes MA: Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus Arachis). Molecular Ecology Notes 2002, 2:551-553.
- [26]He GH, Meng RH, Newman M, Gao GQ, Pittman RN, Prakash CS: Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 2003, 3:3. BioMed Central Full Text
- [27]He GH, Meng RH, Gao H, Guo B, Gao G, Newman M, Pittman RN, Prakash CS: Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 2005, 142:131-136.
- [28]Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S: Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 2004, 108:1064-1070.
- [29]Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 2004, 4:11. BioMed Central Full Text
- [30]Budiman MA, Jones JIT, Citek RW, Warek U, Bedell JA, Knapp SJ: Methylation-filtered and shotgun genomic sequences for diploid and tetraploid peanut taxa. http://www.ncbi.nlm.nih.gov/nucgss webcite
- [31]Wang CT, Yang XD, Chen DX, Yu SL, Liu GZ, Tang YY, Xu JZ: Isolation of simple sequence repeats from groundnut. Electron J Biotechnology 2007, 10:3.
- [32]Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK: Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L.). BMC Plant Biology 2008, 8:55. BioMed Central Full Text
- [33]Gautami B, Ravi K, Lakshmi NM, Hoisington DA, Varshney RK: Novel set of groundnut SSRs for genetic diversity and interspecific transferability. Int J Integr Biology 2009, 7:100-106.
- [34]Nagy ED, Chu Y, Guo YF, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ: Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breeding 2010, 26:357-370.
- [35]Yuan M, Gong LM, Meng RH, Li SL, Dang P, Guo BZ, He GH: Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.). Electron J Biotechnol 2010, 13:6.
- [36]Macedo SE, Moretzsohn MC, Leal-Bertioli SCM, Alves DMT, Gouvea EG, Azevedo VCR, Bertioli DJ: Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Research Notes 2012, 5:86. BioMed Central Full Text
- [37]Gimenes MA, Hoshino AA, Barbosa AVG, Palmieri DA, Lopes CR: Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biology 2007, 7:9. BioMed Central Full Text
- [38]Naito Y, Suzuki S, Iwata Y, Kuboyama T: Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breeding Sci 2008, 58:293-300.
- [39]Song GQ, Li MJ, Xiao H, Wang XJ, Tang RH, Xia H, Zhao CZ, Bi YP: EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.). Electronic J Biotechnology 2010, 13:3.
- [40]Ramsay L, Macaulay M, Ivanissivich S, MacLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, Maestri E, Marniorlin N, Sjakste T, Ganal M, Powell W, Powell W, Waugh R: A simple sequence repeat-based linkage map of barley. Genetics 2000, 156:1997-2005.
- [41]Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ: Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 2001, 160:1115-1123.
- [42]Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB: A new integrated genetic linkage map of the soybean. Theor Appl Genet 2004, 109:122-128.
- [43]Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A: Microsatellite polymorphism in Pisum sativum. Plant Breed 2001, 120:311-317.
- [44]Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR: Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 2006, 172:2541-2555.
- [45]Li YC, Korol AB, Fahima T, Nevo E: Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 2004, 21(6):991-1007.
- [46]Choudhary OP, Trived S: Microsatellite or simple sequence repeat (SSR) instability depends on repeat characteristics during replication and repair. J Cell and Mol Biol 2010, 8(2):21-34.
- [47]Blair MW, Hurtado N, Chavarro CM, Munoz-Torres MC, Giraldo MC, Pedraza F, Tomkins J, Wing R: Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissure ESTs: an integration of the BMc series. BMC Plant Biol 2011, 11:50. BioMed Central Full Text
- [48]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon association, and genetic marker potential. Genome Res 2001, 11:1441-1452.
- [49]Khedikar VP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK: A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 2010, 121:971-984.
PDF