期刊论文详细信息
BMC Genetics
Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.)
Ming Cai2  Tangren Cheng2  Huitang Pan2  Jiuxing Lu2  Yu Guo1  Weiru Yang2  Zongda Xu2  Qixiang Zhang2  Lidan Sun2 
[1] BGI-Shenzhen, 518083 Shenzhen, P.R. China;Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, 100083 Beijing, P.R. China
关键词: SNP array;    SSRs;    InDels;    SNPs;    Low-depth genome sequencing;   
Others  :  1086496
DOI  :  10.1186/1471-2156-14-98
 received in 2013-02-01, accepted in 2013-09-25,  发布年份 2013
PDF
【 摘 要 】

Background

Mei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume ‘Fenban’ and Prunus mume ‘Kouzi Yudie’ to identify high-quality polymorphic markers between the two cultivars on a large scale.

Results

A total of 1464.1 Mb and 1422.1 Mb of ‘Fenban’ and ‘Kouzi Yudie’ sequencing data were uniquely mapped to the mei reference genome with about 6-fold coverage, respectively. We detected a large number of putative polymorphic markers from the 196.9 Mb of sequencing data shared by the two cultivars, which together contained 200,627 SNPs, 4,900 InDels, and 7,063 SSRs. Among these markers, 38,773 SNPs, 174 InDels, and 418 SSRs were distributed in the 22.4 Mb CDS region, and 63.0% of these marker-containing CDS sequences were assigned to GO terms. Subsequently, 670 selected SNPs were validated using an Agilent’s SureSelect solution phase hybridization assay. A subset of 599 SNPs was used to assess the genetic similarity of a panel of mei germplasm samples and a plum (P. salicina) cultivar, producing a set of informative diversity data. We also analyzed the frequency and distribution of detected InDels and SSRs in mei genome and validated their usefulness as DNA markers. These markers were successfully amplified in the cultivars and in their segregating progeny.

Conclusions

A large set of high-quality polymorphic SNPs, InDels, and SSRs were identified in parallel between ‘Fenban’ and ‘Kouzi Yudie’ using low-depth whole-genome sequencing. The study presents extensive data on these polymorphic markers, which can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.

【 授权许可】

   
2013 Sun et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116012422164.pdf 1624KB PDF download
Figure 6. 53KB Image download
Figure 5. 52KB Image download
Figure 4. 48KB Image download
Figure 3. 72KB Image download
Figure 2. 171KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Chen JY: Chinese Mei Flowers (in Chinese). Haikou, China: Hainan Publishing House; 1996.
  • [2]Chu MY: China Fruit Records - Mei (in Chinese). Beijing: China Forestry Press; 1999.
  • [3]Yang C-D, Zhang J-W, Yan X-L, Bao M-Z: Genetic relatedness and genetic diversity of ornamental mei (Prunus mume Sieb. et Zucc.) as analysed by AFLP markers. Tree Genetics & Genomes 2008, 4(2):255-262.
  • [4]Li X, Shangguan L, Song C, Wang C, Gao Z, Yu H, Fang J: Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC genetics 2010, 11:66.
  • [5]Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, et al.: The genome of Prunus mume. Nat Commun 2012, 3:1318.
  • [6]Sun L, Yang W, Zhang Q, Cheng T, Pan H, Xu Z, Zhang J, Chen C: Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc.). PloS one 2013, 8(3):e59562.
  • [7]Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K: Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol 2011, 52(2):274-282.
  • [8]Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino GL: Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 2011, 12:304. BioMed Central Full Text
  • [9]Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, et al.: A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PloS One 2012, 7(1):e29453.
  • [10]Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y, Wang Q, Cheng F, Wang X, Wu J: A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genomics 2011, 12:239. BioMed Central Full Text
  • [11]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001, 11(8):1441-1452.
  • [12]Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE: An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 2006, 16(9):1182-1190.
  • [13]Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, et al.: Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 2011, 43(2):163-168.
  • [14]Resende MD, Resende MF Jr, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, et al.: Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 2012, 194(1):116-128.
  • [15]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [16]Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL: Arabidopsis map-based cloning in the post-genome era. Plant Physiol 2002, 129(2):440-450.
  • [17]Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, et al.: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 2012, 30(1):105-111.
  • [18]Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, et al.: Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 2010, 42(11):1027-1030.
  • [19]Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 2002, 30(2):194-200.
  • [20]Vali U, Brandstrom M, Johansson M, Ellegren H: Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet 2008, 9:8.
  • [21]Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar AA, Kemeza DM, Strassler DS, Ponting CP, Webber C, et al.: Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res 2011, 21(6):830-839.
  • [22]Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, et al.: Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 2007, 317(5836):338-342.
  • [23]Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, et al.: Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 2010, 42(12):1053-1059.
  • [24]Simko I, Haynes KG, Jones RW: Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 2006, 173(4):2237-2245.
  • [25]Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA, Paterson AH, Kresovich S: Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of sorghum bicolor. Genetics 2004, 167(1):471-483.
  • [26]Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB: Single-nucleotide polymorphisms in soybean. Genetics 2003, 163(3):1123-1134.
  • [27]Schneider K, Kulosa D, Soerensen T, Möhring S, Heine M, Durstewitz G, Polley A, Weber E, Jamsari L, Lein J, et al.: Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet 2007, 115(5):601-615.
  • [28]Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM: High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC genomics 2007, 8:424. BioMed Central Full Text
  • [29]Yang Z, Yoder AD: Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 1999, 48(3):274-283.
  • [30]Weir B: Genetic data analysis II. Sunderland, MA: Sinauer Associates, Inc; 1996.
  • [31]Hayashi K, Shimazu K, Yaegaki H, Yamaguchi M, Iketani H, Yamamoto T: Genetic diversity in fruiting and flower-ornamental Japanese apricot (Prunus mume) germplasms assessed by SSR markers. Breed Sci 2008, 58:401-410.
  • [32]Li X, Wang Y, Wang B, Wang C, Shangguan L, HUANG Z, Fang J: Genetic relationships between fruiting and flowering mei (Prunus mume) cultivars using SNP markers. Journal of Horticultural Science & Biotechnology 2010, 85(4):329-334.
  • [33]Shimada T, Haji T, Yamaguchi M, Takeda T, Nomura K, Yoshida M: Classification of mume (Prunus mume Sieb. et Zucc.) by RAPD assay. Journal of the Japanese Society for Horticultural Science 1994, 63(3):543-551.
  • [34]Lee S, Wen J: A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot 2001, 88(1):150-160.
  • [35]Pacurar DI, Pacurar ML, Street N, Bussell JD, Pop TI, Gutierrez L, Bellini C: A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J Exp Bot 2012, 63(7):2491-2501.
  • [36]Taylor MS, Ponting CP, Copley RR: Occurrence and consequences of coding sequence insertions and deletions in Mammalian genomes. Genome Res 2004, 14(4):555-566.
  • [37]Krawitz P, Rodelsperger C, Jager M, Jostins L, Bauer S, Robinson PN: Microindel detection in short-read sequence data. Bioinformatics 2010, 26(6):722-729.
  • [38]Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q: A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res 2007, 14(1):37-45.
  • [39]Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR: Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PloS one 2011, 6(6):e21298.
  • [40]Messier W, Li SH, Stewart CB: The birth of microsatellites. Nature 1996, 381(6582):483.
  • [41]Wilder J, Hollocher H: Mobile elements and the genesis of microsatellites in dipterans. Mol Biol Evol 2001, 18(3):384-392.
  • [42]Wang J, Chen C, Na J-K, Yu Q, Hou S, Paull R, Moore P, Alam M, Ming R: Genome-wide comparative analyses of microsatellites in papaya. Trop Plant Biol 2008, 1(3):278-292.
  • [43]Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, et al.: Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 2006, 172(4):2541-2555.
  • [44]Weber JL: Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 1990, 7(4):524-530.
  • [45]Schlotterer C, Ritter R, Harr B, Brem G: High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol 1998, 15(10):1269-1274.
  • [46]Mitas M, Yu A, Dill J, Kamp TJ, Chambers EJ, Haworth IS: Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res 1995, 23(6):1050-1059.
  • [47]Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT: Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 1995, 81(4):533-540.
  • [48]Chan SW, Henderson IR, Jacobsen SE: Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature reviews Genetics 2005, 6(5):351-360.
  • [49]Varshney RK, Graner A, Sorrells ME: Genic microsatellite markers in plants: features and applications. Trends Biotechnol 2005, 23(1):48-55.
  • [50]Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K: SNP detection for massively parallel whole-genome resequencing. Genome Res 2009, 19(6):1124-1132.
  • [51]Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, et al.: Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009, 27(2):182-189.
  • [52]Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ: A large genome center’s improvements to the Illumina sequencing system. Nat Methods 2008, 5(12):1005-1010.
  • [53]Raymond M, Rousset F: GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J Hered 1995, 86(3):248-249.
  • [54]Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME: Optimizing parental selection for genetic linkage maps. Genome 1993, 36(1):181-186.
  • [55]Rohlf FJ: NTSYS-pc: numerical taxonomy and multivariate analysis system: Applied Biostatistics. 1992.
  • [56]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  文献评价指标  
  下载次数:3次 浏览次数:5次