期刊论文详细信息
BMC Microbiology
Starvation can diversify the population structure and virulence strategies of an environmentally transmitting fish pathogen
E Tellervo Valtonen2  Heidi M T Kunttu2  Lotta-Riina Sundberg1 
[1] Centre of Excellence in Biological Interactions, University of Jyväskylä, Po box 35, FI-40014 Jyväskylä, Finland;Department of Biological and Environmental Science, University of Jyväskylä, Po box 35, FI-40014 Jyväskylä, Finland
关键词: Virulence;    Transmission;    Trade-off;    Starvation;    Flavobacterium columnare;   
Others  :  1141649
DOI  :  10.1186/1471-2180-14-67
 received in 2013-12-18, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

Generalist bacterial pathogens, with the ability for environmental survival and growth, often face variable conditions during their outside-host period. Abiotic factors (such as nutrient deprivation) act as selection pressures for bacterial characteristics, but their effect on virulence is not entirely understood. “Sit and wait” hypothesis expects that long outside-host survival selects for increased virulence, but maintaining virulence in the absence of hosts is generally expected to be costly if active investments are needed. We analysed how long term starvation influences bacterial population structure and virulence of an environmentally transmitting fish pathogen Flavobacterium columnare.

Results

F. columnare populations in distilled water and in lake water were monitored for 5 months. During the experiment, the population structure of F. columnare diversified by rough and soft colony morphotypes appearing among the ancestral rhizoid ones. After 5 months starvation in lake water, the virulence of the starved and ancestral bacterial isolates was tested. The starved rhizoid isolates had significantly higher virulence than the ancestral rhizoid, whereas the virulence of the rough isolates was low.

Conclusions

We suggest that F. columnare population diversification is an adaptation to tolerate unpredictable environment, but may also have other biological significance. Maintaining and increasing virulence ensures efficient invasion into the host especially under circumstances when the host density is low or the outside-host period is long. Changing from rhizoid into a rough morphotype has trade-offs in making bacteria less virulent and unable to exploit the host, but may ensure bacterial survival under unpredictable conditions. Our study gives an example how abiotic selection can diversify virulence of environmentally transmitting bacterial pathogen.

【 授权许可】

   
2014 Sundberg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327101802830.pdf 333KB PDF download
Figure 2. 26KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Frank SA: Models of parasite virulence. Q Rev Biol 1996, 71:37-78.
  • [2]Ebert D, Herre E: The evolution of parasitic diseases. Parasitol Today 1996, 12:96-101.
  • [3]Brown SP, Cornforth DM, Mideo N: Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 2012, 20:336-342.
  • [4]Bohannan B, Lenski RE: Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 2000, 3:362-377.
  • [5]Buckling A, Rainey P: Antagonistic coevolution between a bacterium and a bacteriophage. Proc Royal Soc Biol Sci B 2002, 269:931-936.
  • [6]Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J: Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. Environ Microbiol 2009, 11:1971-1982.
  • [7]Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME: Phage-bacteria infection networks. Trends Microbiol 2013, 21:82-91.
  • [8]Jürgens K, Matz C: Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 2002, 81:413-434.
  • [9]Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S: Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci U S A 2005, 102:16819-16824.
  • [10]Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, Steinberg P, Kjelleberg S: Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 2008, 3:e2744.
  • [11]Anttila J, Ruokolainen L, Kaitala V, Laakso J: Loss of competition in the outside host environment generates outbreaks of environmental opportunist pathogens. PLoS ONE 2013, 8:e71621.
  • [12]Ewald PW: The Evolution of Infectous Disease. New York: Oxford University Press; 1994.
  • [13]Wagner BA, Wise DJ, Khoo LH, Terhune JS: The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health 2002, 14:263-272.
  • [14]Shoemaker CA, Klesius PH, Drennan JD, Evans JJ: Efficacy of a modified live Flavobacterium columnare vaccine in fish. Fish Shellfish Immun 2011, 30:304-308.
  • [15]Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A: Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res 2013, 44:27. BioMed Central Full Text
  • [16]Olivares-Fuster O, Baker JL, Terhune JS, Shoemaker CA, Klesius PH, Arias CR: Host-specific association between Flavobacterium columnare genomovars and fish species. Syst Appl Microbiol 2007, 30:624-633.
  • [17]Kunttu HMT, Sundberg L-R, Pulkkinen K, Valtonen ET: Environment may be the source of Flavobacterium columnare outbreaks at fish farms. Env Microbiol Rep 2012, 4:398-402.
  • [18]Kunttu HMT, Valtonen ET, Jokinen EI, Suomalainen L-R: Saprophytism of a fish pathogen as a transmission strategy. Epidemics 2009, 1:96-100.
  • [19]Laanto E, Bamford J, Laakso J, Sundberg L-R: Phage-driven loss of virulence in a fish pathogenic bacterium. PLoS ONE 2012, 7:e53157.
  • [20]Kunttu HMT, Suomalainen L-R, Jokinen EI, Valtonen ET: Flavobacterium columnare colony types: connection to adhesion and virulence? Microb Pathogenesis 2009, 46:21-27.
  • [21]Bonhoeffer S, Lenski RE, Ebert D: The curse of the pharaoh: the evolution of virulence in pathogens with long living propagules. Proc Royal Soc Biol Sci B 1996, 263:715-721.
  • [22]Kamo M, Boots M: The curse of the pharaoh in space: free-living infectious stages and the evolution of virulence in spatially explicit populations. J Theor Biol 2004, 231:435-441.
  • [23]Walther BA, Ewald PW: Pathogen survival in the external environment and the evolution of virulence. Biol Rev Camb Philos Soc 2004, 79:849-869.
  • [24]Mennerat A, Nilsen F, Ebert D, Skorping A: Intensive farming: evolutionary implications for parasites and pathogens. Evol Biol 2010, 37:59-67.
  • [25]Greub G, Raoult D: Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004, 17:413-433.
  • [26]Meltz Steinberg K, Levin BR: Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc Royal Soc Biol Sci B 2007, 274:1921-1929.
  • [27]Friman V-P, Lindstedt C, Hiltunen T, Laakso J, Mappes J: Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 2009, 4:e6761.
  • [28]Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F: From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS ONE 2010, 5:e11882.
  • [29]Arias CR, Lafrentz S, Cai W, Olivares-Fuster O: Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes. BMC Microbiol 2012, 12:266. BioMed Central Full Text
  • [30]Heim S, Lleo MM, Bonato B, Guzman CA, Canepari P: The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 2002, 184:6739-6745.
  • [31]Pawlowski DR, Metzger DJ, Raslawsky A, Howlett A, Siebert G, Karalus RJ, Garrett S, Whitehouse CA: Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm. PLoS ONE 2011, 6:e17585.
  • [32]Baker RM, Singleton FL, Hood MA: Effects of nutrient deprivation on Vibrio cholerae. Appl Environ Microbiol 1983, 46:930-940.
  • [33]Humphrey B, Kjelleberg S, Marshall KC: Responses of marine bacteria under starvation conditions at a solid-water interface. Appl Environ Microbiol 1983, 45:43-47.
  • [34]Kjelleberg S, Hermansson M: Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol 1984, 48:497-503.
  • [35]Paszko-Kolva C: Long-term survival of Legionella pneumophila serogroup 1 under low-nutrient conditions and associated morphological changes. FEMS Microbiol Lett 1992, 102:45-55.
  • [36]Yoshida S, Ogawa M, Mizuguchi Y: Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Inf Immun 1985, 47:446-451.
  • [37]Ottemann KM, Miller JF: Roles for motility in bacterial-host interactions. Mol Microbiol 1997, 24:1109-1117.
  • [38]Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K: A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Scis 2010, 107:276-281.
  • [39]King OD, Masel J: The evolution of bet-hedging adaptations to rare scenarios. Theor Pop Biol 2007, 72:560-575.
  • [40]Chevin L-M, Gallet R, Gomulkiewicz R, Holt RD, Fellous S: Phenotypic plasticity in evolutionary rescue experiments. Phil Trans Royal Soc B 2013, 368:20120089.
  • [41]Suomalainen LR, Kunttu H, Valtonen ET, Hirvela-Koski V, Tiirola M: Molecular diversity and growth features of Flavobacterium columnare strains isolated in Finland. Dis Aquat Organ 2006, 70:55-61.
  • [42]Shieh HS: Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Letters 1980, 13:129-133.
  文献评价指标  
  下载次数:24次 浏览次数:23次