期刊论文详细信息
BMC Microbiology
Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus)
Steve J Perlman1  Patrick von Aderkas1  Amber R Paulson1 
[1] Department of Biology, University of Victoria, Station CSC, Victoria V8W 3 N5, BC, Canada
关键词: Wolbachia;    Symbiosis;    Seed parasitism;    Rickettsia;    Ralstonia;    Microbiome;    Galls;    Endophytophagy;    Burkholderia;   
Others  :  1170530
DOI  :  10.1186/s12866-014-0224-4
 received in 2014-03-20, accepted in 2014-08-18,  发布年份 2014
PDF
【 摘 要 】

Background

The success of herbivorous insects has been shaped largely by their association with microbes. Seed parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known about the microbial associates of seed-parasitic insects. We characterized the bacterial symbionts of Megastigmus (Hymenoptera: Torymidae), a lineage of seed-parasitic chalcid wasps, with the goal of identifying microbes that might play an important role in aiding development within seeds, including supplementing insect nutrition or manipulating host trees. We screened multiple populations of seven species for common facultative inherited symbionts. We also performed culture independent surveys of larvae, pupae, and adults of M. spermotrophus using 454 pyrosequencing. This major pest of Douglas-fir is the best-studied Megastigmus, and was previously shown to manipulate its tree host into redirecting resources towards unfertilized ovules. Douglas-fir ovules and the parasitoid Eurytoma sp. were also surveyed using pyrosequencing to help elucidate possible transmission mechanisms of the microbial associates of M. spermotrophus.

Results

Three wasp species harboured Rickettsia; two of these also harboured Wolbachia. Males and females were infected at similar frequencies, suggesting that these bacteria do not distort sex ratios. The M. spermotrophus microbiome is dominated by five bacterial OTUs, including lineages commonly found in other insect microbiomes and in environmental samples. The bacterial community associated with M. spermotrophus remained constant throughout wasp development and was dominated by a single OTU ¿ a strain of Ralstonia, in the Betaproteobacteria, comprising over 55% of all bacterial OTUs from Megastigmus samples. This strain was also present in unparasitized ovules.

Conclusions

This is the first report of Ralstonia being an abundant and potentially important member of an insect microbiome, although other closely-related Betaproteobacteria, such as Burkholderia, are important insect symbionts. We speculate that Ralstonia might play a role in nutrient recycling, perhaps by redirecting nitrogen. The developing wasp larva feeds on megagametophyte tissue, which contains the seed storage reserves and is especially rich in nitrogen. Future studies using Ralstonia-specific markers will determine its distribution in other Megastigmus species, its mode of transmission, and its role in wasp nutrition.

【 授权许可】

   
2014 Paulson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417020715886.pdf 2119KB PDF download
Figure 4. 39KB Image download
Figure 3. 31KB Image download
Figure 2. 83KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Schoonhoven LM, van Loon JJA, Dicke M: Insect-Plant Biology 2nd Edition. Oxford University Press, New York, USA; 2005.
  • [2]Janson EM, Stireman JO, Singer MS, Abbot P: Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 2008, 62:997-1012.
  • [3]Feldhaar H: Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 2011, 36:533-543.
  • [4]Dillon RJ, Dillon VM: The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 2004, 49:71-92.
  • [5]Douglas AE: The microbial dimension in insect nutritional ecology. Funct Ecol 2009, 23:38-47.
  • [6]Engel P, Moran NA: The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013, 37:699-735.
  • [7]Nakabachi A, Ishikawa H: Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 1999, 45:1-6.
  • [8]McCutcheon JP, Moran NA: Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci 2007, 104:19392-19397.
  • [9]Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, et al.: Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 2007, 450:560-565.
  • [10]Whitehead LF, Wilkinson TL, Douglas AE: Nitrogen recycling in the pea aphid (Acyrtosiphon pisum) symbiosis. Proc R Soc London B Biol Sci 1992, 250:115-117.
  • [11]Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF: Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 2013, 79:3468-3475.
  • [12]Genta FA, Dillon RJ, Terra WR, Ferreira C: Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 2006, 52:593-601.
  • [13]Baumann P: Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 2005, 59:155-189.
  • [14]Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008, 42:165-190.
  • [15]Stouthamer R, Breeuwer JAJ, Hurst GDD: Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 1999, 53:71-102.
  • [16]Frago E, Dicke M, Godfray HCJ: Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 2012, 27:705-711.
  • [17]Oliver KM, Degnan PH, Burke GR, Moran NA: Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 2010, 55:247-266.
  • [18]Tsuchida T, Koga R, Fukatsu T: Host plant specialization governed by facultative symbiont.Science 2004, 303:1989.
  • [19]Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ: Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 2013, 23:1-5.
  • [20]Breznak JA: Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 1982, 36:323-343.
  • [21]Bracke JW, Cruden DL, Markovetz AJ: Intestinal microbial flora of the of the American cockroach, Periplaneta americana L. Appl Environ Microbiol 1979, 38:945-955.
  • [22]Glasgow H: The gastric caeca and the caecal bacteria of the Heteroptera. Biol Bull 1914, 26:101-170.
  • [23]Jones KG, Dowd PF, Blackwell M: Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycol Res 1999, 103:542-546.
  • [24]Nalepa CA, Bignell DE, Bandi C: Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc 2001, 48:194-201.
  • [25]Hosokawa T, Kikuchi Y, Meng XY, Fukatsu T: The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima. FEMS Microbiol Ecol 2005, 54:471-477.
  • [26]Shibata TF, Maeda T, Nikoh N, Yamaguchi K, Oshima K, Hattori M, Nishiyama T, Hasebe M, Fukatsu T, Kikuchi Y, Shigenobu S: Bacterial symbiont of the Bean bug Riptortus pedestris. Genome Announc 2013, 1:1-2.
  • [27]Olivier-Espejel AS, Sabree ZL, Noge K, Becerra JX: Gut microbiota in nymph and adults of the giant mesquite bug (Thasus neocalifornicus) (Heteroptera: Coreidae) is dominated by Burkholderia acquired de novo every generation. Environ Entomol 2011, 40:1102-1110.
  • [28]Kikuchi Y, Hosokawa T, Fukatsu T: Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 2007, 73:4308-4316.
  • [29]Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T: Obligate symbiont involved in pest status of host insect. Proc R Soc B Biol Sci 2007, 274:1979-1984.
  • [30]Kukor JJ, Martin MM: Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science 1983, 220:1161-1163.
  • [31]¿r?tka P, Pa¿outová S, Kola?ík M: Daldinia decipiens and Entonaema cinnabarina as fungal symbionts of Xiphydria wood wasps. Mycol Res 2007, 111(Pt 2):224-231.
  • [32]Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF: Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 2011, 5:1323-1331.
  • [33]Weber NA: Fungus-growing ants. Science 1966, 153:587-604.
  • [34]Martinson VG, Moy J, Moran NA: Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 2012, 78:2830-2840.
  • [35]Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA: A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011, 20:619-628.
  • [36]Jeyaprakash A, Hoy MA, Allsopp MH: Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 2003, 84:96-103.
  • [37]Mohr KI, Tebbe CC: Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 2006, 8:258-272.
  • [38]Olofsson TC, Vásquez A: Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 2008, 57:356-363.
  • [39]Moran NA, Hansen AK, Powell JE, Sabree ZL: Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees.PLoS One 2012, 7:e36393.
  • [40]Van Borm S, Buschinger A, Boomsma JJ, Billen J: Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc R Soc London B Biol Sci 2002, 269:2023-2027.
  • [41]Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE, Hu Y, Basinger U, Mott BM, Buck N, Wheeler DE: Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol 2012, 21:2282-2296.
  • [42]Russell JA, Moreau CS, Goldman-huertas B, Fujiwara M, Lohman DJ, Pierce NE: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci 2009, 106:21236-21241.
  • [43]Degnan P, Lazarus A, Brock C, Wernegreen J: Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol 2004, 53:95-110.
  • [44]Gil R, Silva FJ, Zientz E, Delmotte F, González-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Hölldobler B, van Ham RCHJ, Gross R, Moya A: The genome sequence of blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci 2003, 100:9388-9393.
  • [45]Degnan PH, Lazarus AB, Wernegreen JJ: Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 2005, 15:1023-1033.
  • [46]Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, Gross R: Nutritional upgrading for omnivorous carpenter ants by the endosymbiontBlochmannia.BMC Biol 2007, 5:48.
  • [47]Giron D, Kaiser W, Imbault N, Casas J: Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol Lett 2007, 3:340-343.
  • [48]Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M: Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol 2013, 27:599-609.
  • [49]Stone GN, Schönrogge K: The adaptive significance of insect gall morphology. Trends Ecol Evol 2003, 18:512-522.
  • [50]Schwachtje J, Baldwin IT: Why does herbivore attack reconfigure primary metabolism? Plant Physiol 2008, 146:845-851.
  • [51]Kaiser W, Huguet E, Casas J, Commin C, Giron D: Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B Biol Sci 2010, 277:2311-2319.
  • [52]Jameson P: Cytokinins and auxins in plant-pathogen interactions ¿ An overview. Plant Growth Regul 2000, 32:369-380.
  • [53]Sakakibara H: Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 2006, 57:431-449.
  • [54]Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K: Cytokinin: secret agent of symbiosis. Trends Plant Sci 2008, 13:115-120.
  • [55]Body M, Kaiser W, Dubreuil G, Casas J, Giron D: Leaf-miners co-opt microorganisms to enhance their nutritional environment. J Chem Ecol 2013, 39:969-977.
  • [56]Auger-Rozenberg M-A, Roques A: Seed wasp invasions promoted by unregulated seed trade affect vegetal and animal biodiversity. Integr Zool 2012, 7:228-246.
  • [57]Grissell EE: An annotated catalog of world Megastigminae (Hymenoptera: Chalcidoidea: Torymidae). Contrib Am Entomol Inst 1999, 31:1-92.
  • [58]Roques A, Skrzypczy?ska M: Seed-infesting chalcids of the genus Megastigmus Dalman, 1820 (Hymenoptera: Torymidae) native and introduced to the West Palearctic region: Taxonomy, host specificity and distribution. J Nat Hist 2003, 37:127-238.
  • [59]von Aderkas P, Rouault G, Wagner R, Rohr R, Roques A: Seed parasitism redirects ovule development in Douglas fir. Proc R Soc B Biol Sci 2005, 272:1491-1496.
  • [60]von Aderkas P, Rouault G, Wagner R, Chiwocha S, Roques A: Multinucleate storage cells in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) and the effect of seed parasitism by the chalcid Megastigmus spermotrophus Wachtl. Heredity 2005, 94:616-622.
  • [61]Chiwocha S, Rouault G, Abrams S, von Aderkas P: Parasitism of seed of Douglas fir (Pseudotsuga menziesii) by the seed chalcid, Megastigmus spermotrophus, and its influence on seed hormone physiology. Sex Plant Reprod 2007, 20:19-25.
  • [62]Rouault G, Turgeon J, Candau J-N, Roques A, von Aderkas P: Oviposition strategies of conifer seed chalcids in relation to host phenology. Naturwissenschaften 2004, 91:472-480.
  • [63]Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD: The diversity of reproductive parasites among arthropods:Wolbachiado not walk alone.BMC Biol 2008, 6:27.
  • [64]Boivin T, Henri H, Vaver F, Gidoin C, Candau J-N, Magnoux E, Roques A, Auger-Rozenbert M-A: Epidemiology of thelytoky induced by the endosymbiotic Wolbachia across seed-specialized wasp species: host plant specialization matters. Mol Ecol 2014, 23:2362-2375.
  • [65]Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM: Evolution and diversity ofRickettsiabacteria.BMC Biol 2009, 7:6.
  • [66]Ludwig W, Schleifer K-H, Whitman WB: Revised road map to the phylum Firmicutes. In Bergey¿s Manual of Systematic Bacteriology Vol 3. Springer, New York; 2008.
  • [67]Zug R, Hammerstein P: Still a host of hosts forWolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected.PLoS One 2012, 7:e38544.
  • [68]Werren JH, Baldo L, Clark ME: Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008, 6:741-751.
  • [69]Stouthamer R: Wolbachia-induced parthenogenesis. In Influential Passengers. Edited by O¿Neill SL, Werren JH. Oxford University Press, New York, USA; 1997:102-124.
  • [70]Rokas A, Atkinson RJ, Nieves-Aldrey J-L, West SA, Stone GN: The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Mol Ecol 2002, 11:1815-1829.
  • [71]Plantard O, Rasplus J, Clainche Le I, Solignac M: Wolbachia-induced thelytoky in the rose gallwasp Diplolepis spinosissimae (Giraud) (Hymenoptera: Cynipidae), and its consequences on the genetic structure of its host. Proc R Soc London B Biol Sci 1998, 265:1075-1080.
  • [72]Perlman SJ, Hunter MS, Zchori-Fein E: The emerging diversity of Rickettsia. Proc R Soc B Biol Sci 2006, 273:2097-2106.
  • [73]Werren JH, Hurst GD, Zhang W, Breeuwer JA, Stouthamer R, Majerus ME: Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 1994, 176:388-394.
  • [74]Hagimori T, Abe Y, Date S, Miura K: The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr Microbiol 2006, 52:97-101.
  • [75]Teixeira L, Ferreira A, Ashburner M: The bacterial symbiontWolbachiainduces resistance to RNA viral infections inDrosophila melanogaster.PLoS Biol 2008, 6:e2.
  • [76]?ukasik P, van Asch M, Guo H, Ferrari J, Godfray HCJ: Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 2013, 16:214-218.
  • [77]Gehrer L, Vorburger C: Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett 2012, 8:613-615.
  • [78]Duron O, Wilkes TE, Hurst GDD: Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 2010, 13:1139-1148.
  • [79]Bressan A, Sémétey O, Arneodo J, Lherminier J, Boudon-Padieu E: Vector transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathology 2009, 99:1289-1296.
  • [80]Jaenike J, Polak M, Fiskin A, Helou M, Minhas M: Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 2007, 3:23-25.
  • [81]Moran NA, Dunbar HE: Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci U S A 2006, 103:12803-12806.
  • [82]Gatineau F, Jacob N, Vautrin S, Larrue J, Lherminier J, Richard-Molard M, Boudon-Padieu E: Association with the syndrome ¿Basses Richesses¿ of sugar beet of a Phytoplasma and a bacterium-like organism transmitted by a Pentastiridius sp. Phytopathology 2002, 92:384-392.
  • [83]Danet J, Foissac X, Zreik L, Salar P, Verdin E, Nourrisseau J, Garnier M: ¿Candidatus Phlomobacter fragariae ¿ is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology 2002, 93:644-649.
  • [84]Colman DR, Toolson EC, Takacs-Vesbach CD: Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 2012, 20:5124-5137.
  • [85]Brucker RM, Bordenstein SR: The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution 2012, 66:349-362.
  • [86]Kautz S, Rubin BER, Russell JA, Moreau CS: Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl Environ Microbiol 2013, 79:525-534.
  • [87]Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG: Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 2011, 61:821-831.
  • [88]Janssen PH: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 2006, 72:1719-1728.
  • [89]Da Rocha UN, van Overbeek L, van Elsas JD: Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 2009, 69:313-328.
  • [90]Mundt JO, Hinkle NF: Bacteria within ovules and seeds. Appl Environ Microbiol 1976, 32:694-698.
  • [91]Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N: Identification and characterization of bacterial endophytes of rice. Mycopathologia 1996, 134:151-159.
  • [92]Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW: Bacterial endophytes in agricultural crops. Can J Microbiol 1997, 43:895-914.
  • [93]Sharkey MJ: Phylogeny and classification of Hymenoptera. Zootaxa 2007, 1668:521-548.
  • [94]Hakim RS, Baldwin K, Smagghe G: Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 2010, 55:593-608.
  • [95]Bution ML, Caetano FH: Symbiotic bacteria and the structural specializations in the ileum of Cephalotes ants. Micron 2010, 41:373-381.
  • [96]Brenner DJ, Krieg NR, Staley JT: Volume 2, Part C, The Proteobacteria; the Alpha-, Beta-, Delta-, and Epsilonproteobacteria. In Bergey¿s Manual of Systematic Bacteriology. 2nd edition. Springer, New York; 2005.
  • [97]Jones RT, McCormick KF, Martin AP: Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl Environ Microbiol 2008, 74:1667-1670.
  • [98]Lundgren JG, Lehman RM: Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle.PLoS One 2010, 5:e10831.
  • [99]Hail D, Dowd SE, Bextine B: Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) Lifestages. Environ Entomol 2012, 41:98-107.
  • [100]Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP: Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013, 153:1567-1578.
  • [101]Vaneechoutte M, Kämpfer P, Thierry DB, Falsen E, Verschraegen G: Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 2004, 54:317-327.
  • [102]Kikuchi Y, Hosokawa T, Fukatsu T: An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J 2011, 5:446-460.
  • [103]Kikuchi Y, Meng X, Fukatsu T: Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 2005, 71:4035-4043.
  • [104]Stone SL, Gifford DJ: Structural and biochemical changes in Loblolly Pine (Pinus taeda L.) seeds during germination and early seedling growth. II. Storage triacylglycerols and carbohydrates. Int J Plant Sci 1999, 160:663-671.
  • [105]King JE, Gifford DJ: Amino acid utilization in seeds of Loblolly pine during germination and early seedling growth. 1. Arginine and arginase activity. Plant Physiol 1997, 113:1125-1135.
  • [106]Todd CD, Gifford DJ: The role of the megagametophyte in maintaining loblolly pine (Pinus taeda L.) seedling arginase gene expression in vitro. Planta 2002, 215:110-118.
  • [107]Pant R: Nitrogen excretion in insects. Proc Anim Sci 1988, 97:379-415.
  • [108]Rosenthal GA, Janzen DH, Dahlman DL, Url S, Carolina N, Hill C: Degradation and detoxification of canavanine by a specialized seed predator. Science 1977, 196:658-660.
  • [109]Sabree ZL, Kambhampati S, Moran NA: Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci 2009, 106:19521-19526.
  • [110]Zientz E, Dandekar T, Gross R: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 2004, 68:745-770.
  • [111]Kashima T, Nakamura T, Tojo S: Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. J Insect Physiol 2006, 52:816-825.
  • [112]Chen W-M, James EK, Prescott AR, Kierans M, Sprent JI: Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 2003, 16:1051-1061.
  • [113]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [114]Wang H-X, Geng Z-L, Zeng Y, Shen Y-M: Enriching plant microbiota for a metagenomic library construction. Environ Microbiol 2008, 10:2684-2691.
  • [115]Aires T, Marbà N, Serrao EA, Duarte CM, Arnaud-Haond S: Selective elimination of chloroplastidial DNA for metagenomics of bacteria associated with the green algae Caulerpa taxifolia (Bryopsidophyceae). J Phycol 2012, 48:483-490.
  • [116]Palavesam A, Guerrero FD, Heekin AM, Wang J, Dowd SE, Sun Y, Foil LD, de Pérez León AA: Pyrosequencing-based analysis of the microbiome associated with the Horn Fly,Haematobia irritans.PLoS One 2012, 7:e44390.
  • [117]Shange RS, Ankumah RO, Ibekwe AM, Zabawa R, Dowd SE: Distinct soil bacterial communities revealed under a diversely managed agroecosystem.PLoS One 2012, 7:e40338.
  • [118]Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS: Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP).BMC Microbiol 2008, 8:125.
  • [119]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-7541.
  • [120]Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010, 7:335-336.
  • [121]Reeder J, Knight R: Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 2010, 7:668-669.
  • [122]Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R: UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27:2194-2200.
  • [123]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26:2460-2461.
  • [124]Wang Q, Garrity GM, Tiedje JM, Cole JR: Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007, 73:5261-5267.
  • [125]McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012, 6:610-618.
  • [126]Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE: Impact of training sets on classification of high-throughput bacterial 16 s rRNA gene surveys. ISME J 2012, 6:94-103.
  • [127]Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics 2009, 25:1335-1337.
  • [128]Price MN, Dehal PS, Arkin AP: FastTree 2 - Approximately maximum-likelihood trees for large alignments.PLoS One 2010, 5:e9490.
  • [129]Sourial N, Wolfson C, Zhu B, Quail J, Fletcher J, Karunananthan S, Bandeen-Roche K, Béland F, Bergman H: Correspondence analysis is a useful tool to uncover the relationships among categorical variables. J Clin Epidemiol 2010, 63:638-646.
  • [130]A language and environmnet for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.
  • [131]Mcmurdie PJ, Holmes S: Phyloseq: A bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pacific Symp Biocomput 2012, 17:235-246.
  • [132]Dray S, Dufour A-B: The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw 2007, 22:1-20.
  • [133]Lozupone C, Knight R: UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005, 71:8228-8235.
  • [134]Hamady M, Lozupone C, Knight R: Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 2010, 4:17-27.
  • [135]Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG: Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998, 64:795-799.
  • [136]Schabereiter-Gurtner C, Lubitz W, Rölleke S: Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods 2003, 52:251-260.
  文献评价指标  
  下载次数:39次 浏览次数:16次