BMC Psychiatry | |
Association of the Hermansky–Pudlak syndrome type 4 (HPS4) gene variants with cognitive function in patients with schizophrenia and healthy subjects | |
Kazufumi Akiyama4  Kenichi Ohmori3  Harunobu Mori5  Toshihiko Inukai2  Kazutaka Shimoda1  Kumiko Fujii1  Takashi Watanabe1  Yuji Ozeki1  Atsushi Saito4  Go Kuratomi4  | |
[1] Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan;Department of Internal Medicine (Endocrinology, Metabolism, and Hematology), Dokkyo Medical University Koshigaya Hospital, 2-1-50 Minamikoshigaya, Koshigaya, Saitama 3438555, Japan;Takizawa Hospital, 2-29 Hanabusahoncho Utsunomiya, Tochigi 3200828, Japan;Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan;Mori Hospital, 419 Iidamachi, Utsunomiya, Tochigi 3210347, Japan | |
关键词: rs713998; rs9608491; BACS; Executive function; Working memory; Cognition; HPS4; | |
Others : 1123918 DOI : 10.1186/1471-244X-13-276 |
|
received in 2013-08-27, accepted in 2013-10-25, 发布年份 2013 | |
【 摘 要 】
Background
The Hermansky–Pudlak Syndrome Type 4 (HPS4) gene, which encodes a subunit protein of the biogenesis of lysosome-related organelles complex (BLOC)-3, which is involved in late endosomal trafficking, is associated with schizophrenia; however, its clinical relevance in schizophrenia remains unknown. The purpose of the present study was to investigate whether HPS4 is associated with cognitive functions in patients with schizophrenia and healthy controls and with the clinical profiles of patients with schizophrenia.
Methods
We investigated the association of variants of HPS4 with clinical symptoms and cognitive function in Japanese patients with schizophrenia (n = 240) and age-matched healthy control subjects (n = 240) with single nucleotide polymorphisms (SNP)- or haplotype-based linear regression. We analyzed five tagging SNPs (rs4822724, rs61276843, rs9608491, rs713998, and rs2014410) of HPS4 and 2–5 locus haplotypes of these five SNPs. The cognitive functions of patients and healthy subjects were evaluated with the Brief Assessment of Cognition in Schizophrenia, Japanese-language version, and the patients were assessed for their symptomatology with the Positive and Negative Symptom Scale (PANSS).
Results
In patients with schizophrenia, rs713998 was significantly associated with executive function under the dominant genetic model (P = 0.0073). In healthy subjects, there was a significant association between working memory and two individual SNPs under the recessive model (rs9608491: P = 0.001; rs713998: P = 0.0065) and two haplotypes (rs9608491-713998: P = 0.0025; rs61276843-9608491-713998: P = 0.0064). No significant association was found between HPS4 SNPs and PANSS scores or premorbid IQ, as measured by the Japanese version of the National Adult Reading Test.
Conclusions
These findings suggested the involvement of HPS4 in the working memory of healthy subjects and in the executive function deficits in schizophrenia.
【 授权许可】
2013 Kuratomi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150216051352795.pdf | 262KB | download |
【 参考文献 】
- [1]Green MF, Kern RS, Braff DL, Mintz J: Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr Bull 2000, 26(1):119-136.
- [2]Gold JM: Cognitive deficits as treatment targets in schizophrenia. Schizophr Res 2004, 72(1):21-28.
- [3]Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L: The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res 2004, 68(2–3):283-297.
- [4]Eisenberg DP, Berman KF: Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 2010, 35(1):258-277.
- [5]Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ, Stone WS: The Consortium on the Genetics of Schizophrenia: neurocognitive endophenotypes. Schizophr Bull 2007, 33(1):49-68.
- [6]Green AE, Munafò MR, DeYoung CG, Fossella JA, Fan J, Gray JR: Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci 2008, 9(9):710-720.
- [7]Meyer-Lindenberg A, Weinberger DR: Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006, 7(10):818-827.
- [8]DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW, Wellman N, Loftus J, Nanthakumar B, Razi K, Stewart J, Comazzi M, Vita A, Heffner T, Sherrington R: A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002, 159(5):803-812.
- [9]Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, McGuffin P, Nanko S, Owen M, Antonarakis S, Housman D, Kazazian H, Nestadt G, Pulver AE, Straub RE, MacLean CJ, Walsh D, Kendler KS, DeLisi L, Polymeropoulos M, Coon H, Byerley W, Lofthouse R, Gershon E, Golden L, Crow T, Freedman R, Laurent C, Bodeau-Pean S, d’Amato T, et al.: A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. Am J Med Genet 1996, 67(1):40-45.
- [10]Takahashi S, Ohtsuki T, Yu SY, Tanabe E, Yara K, Kamioka M, Matsushima E, Matsuura M, Ishikawa K, Minowa Y, Noguchi E, Nakayama J, Yamakawa-Kobayashi K, Arinami T, Kojima T: Significant linkage to chromosome 22q for exploratory eye movement dysfunction in schizophrenia. Am J Med Genet Part B 2003, 123B(1):27-32.
- [11]Anderson PD, Huizing M, Claassen DA, White J, Gahl WA: Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum Genet 2003, 113(1):10-17.
- [12]Suzuki T, Li W, Zhang Q, Karim A, Novak EK, Sviderskaya EV, Hill SP, Bennett DC, Levin AV, Nieuwenhuis HK, Fong CT, Castellan C, Miterski B, Swank RT, Spritz RA: Hermansky-Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nat Genet 2002, 30(3):321-324.
- [13]Chiang PW, Oiso N, Gautam R, Suzuki T, Swank RT, Spritz RA: The Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles. J Biol Chem 2003, 278(22):20332-20337.
- [14]Martina JA, Moriyama K, Bonifacino JS: BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem 2003, 278(31):29376-29384.
- [15]Nazarian R, Falcón-Pérez JM, Dell’Angelica EC: Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proc Natl Acad Sci USA 2003, 100(15):8770-8775.
- [16]Hermansky F, Pudlak P: Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood 1959, 14(2):162-169.
- [17]Saito A, Kuratomi G, Ito C, Matsuoka H, Suzuki T, Ozeki Y, Watanabe T, Fujii K, Shimoda K, Fukushima Y, Inukai T, Ohmori K, Akiyama K: An association study of the Hermansky-Pudlak syndrome type 4 gene in schizophrenic patients. Psychiatr Genet 2013, 23(4):163-173.
- [18]Cullinane AR, Curry JA, Carmona-Rivera C, Summers CG, Ciccone C, Cardillo ND, Dorward H, Hess RA, White JG, Adams D, Huizing M, Gahl WA: A BLOC-1 mutation screen reveals that PLDN is mutated in Hermansky-Pudlak Syndrome type 9. Am J Hum Genet 2011, 88(6):778-787.
- [19]Wei ML: Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 2006, 19(1):19-42.
- [20]Di Pietro SM, Falcón-Pérez JM, Tenza D, Setty SR, Marks MS, Raposo G, Dell’Angelica EC: BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol Biol Cell 2006, 17(9):4027-4038.
- [21]Hikita T, Taya S, Fujino Y, Taneichi-Kuroda S, Ohta K, Tsuboi D, Shinoda T, Kuroda K, Funahashi Y, Uraguchi-Asaki J, Hashimoto R, Kaibuchi K: Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein. J Neurochem 2009, 110(5):1567-1574.
- [22]Taneichi-Kuroda S, Taya S, Hikita T, Fujino Y, Kaibuchi K: Direct interaction of dysbindin with the AP-3 complex via its mu subunit. Neurochem Int 2009, 54(7):431-438.
- [23]Larimore J, Tornieri K, Ryder PV, Gokhale A, Ziatic SA, Craige B, Lee JD, Talbot K, Pare J-F, Smith Y, Faundez V: The schizophrenia susceptibility factor dysbindin and its assciated complex sort cargoes from cell bodies to the synapse. Mol Biol Cell 2011, 22(24):4854-4867.
- [24]Gokhale A, Larimore J, Werner E, So L, Moreno-De-Luca A, Lese-Martin C, Lupashin VV, Smith Y, Faundez V: Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factoe dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1. J Neurosci 2012, 32(11):3697-3711.
- [25]Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O’Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, Jenkins NA, Amato D, Roe BA, Starcevic M, Dell’Angelica EC, Elliott RW, Mishra V, Kingsmore SF, Paylor RE, Swank RT: Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 2003, 35(1):84-89.
- [26]Mullin AP, Gokhale A, Larimore J, Faundez V: Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene. Mol Neurobiol 2011, 44(1):53-64.
- [27]Alfimova MV, Monakhov MV, Abramova LI, Golubev SA, Golimbet VE: Polymorphism of serotonin receptor genes (5-HTR2A) and Dysbindin (DTNBP1) and individual components of short-term verbal memory processes in Schizophrenia. Neurosci Behav Physiol 2010, 40(8):934-940.
- [28]Hashimoto R, Noguchi H, Hori H, Ohi K, Yasuda Y, Takeda M, Kunugi H: Association between the dysbindin gene (DTNBP1) and cognitive functions in Japanese subjects. Psychiatry Clin Neurosci 2009, 63(4):550-556.
- [29]Hashimoto R, Noguchi H, Hori H, Nakabayashi T, Suzuki T, Iwata N, Ozaki N, Kosuga A, Tatsumi M, Kamijima K, Harada S, Takeda M, Saitoh O, Kunugi H: A genetic variation in the dysbindin gene (DTNBP1) is associated with memory performance in healthy controls. World J Biol Psychiatry 2010, 11(2):431-438.
- [30]Luciano M, Miyajima F, Lind PA, Bates TC, Horan M, Harris SE, Wright MJ, Ollier WE, Hayward C, Pendleton N, Gow AJ, Visscher PM, Starr JM, Deary IJ, Martin NG, Payton A: Variation in the dysbindin gene and normal cognitive function in three independent population samples. Genes Brain Behav 2009, 8(2):218-227.
- [31]Baek JH, Kim JS, Ryu S, Oh S, Noh J, Lee WK, Park T, Lee YS, Lee D, Kwon JS, Hong KS: Association of genetic variations in DTNBP1 with cognitive function in schizophrenia patients and healthy subjects. Am J Med Genet Part B 2012, 159B(7):841-849.
- [32]Stefanis NC, Trikalinos TA, Avramopoulos D, Smyrnis N, Evdokimidis I, Ntzani EE, Ioannidis JP, Stefanis CN: Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biol Psychiatry 2007, 62(7):784-792.
- [33]Falcón-Pérez JM, Nazarian R, Sabatti C, Dell’Angelica EC: Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J Cell Sci 2005, 118(22):5243-5255.
- [34]Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Murthy N, Ghirlando R, van der Sluijs P, Hurley JH, Bonifacino JS: Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. J Biol Chem 2010, 285(10):7794-7804.
- [35]Gerondopoulos A, Langemeyer L, Liang J-R, Linford A, Barr FA: BLOC-3 mutated in Hermansky-Pudlak syndome is a Rab32/38 guanine nucleotide exchanger factor. Curr Biol 2012, 22(22):2135-2139.
- [36]Keefe RS, Harvey PD, Goldberg TE, Gold JM, Walker TM, Kennel C, Hawkins K: Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophr Res 2008, 102(1–3):108-115.
- [37]Kaneda Y, Sumiyoshi T, Keefe R, Ishimoto Y, Numata S, Ohmori T: Brief assessment of cognition in schizophrenia: validation of the Japanese version. Psychiatry Clin Neurosci 2007, 61(6):602-609.
- [38]American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, DC: American Psychiatric Publishing Inc.; 2000.
- [39]World Medical Association [http://www.wma.net webcite]
- [40]Kay SR, Fiszbein A, Opler LA: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13(2):261-276.
- [41]Ota T, Iida J, Sawada M, Suehiro Y, Kishimoto N, Tanaka S, Nagauchi K, Nakanishi Y, Yamamuro K, Negoro H, Iwasaka H, Sadamatsu M, Kishimoto T: Comparison of pervasive developmental disorder and schizophrenia by the Japanese version of the National Adult Reading Test. Int J Psychiatry Clin Pract 2013, 17(1):10-15.
- [42]Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H, Noguchi H, Nakabayashi T, Hori H, Ohmori M, Tsukue R, Anami K, Hirabayashi N, Harada S, Arima K, Saitoh O, Kunugi H: The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 2006, 129(2):399-410.
- [43]Takei K, Yamasue H, Abe O, Yamada H, Inoue H, Suga M, Muroi M, Sasaki H, Aoki S, Kasai K: Structural disruption of the dorsal cingulum bundle is associated with impaired Stroop performance in patients with schizophrenia. Schizophr Res 2009, 114(1–3):119-127.
- [44]Crawford JR, Besson JA, Bremner M, Ebmeier KP, Cochrane RH, Kirkwood K: Estimation of premorbid intelligence in schizophrenia. Br J Psychiatry 1992, 161:69-74.
- [45]PLINK: Whole genome data analysis toolset [http://pngu.mgh.harvard.edu/~purcell/plink/ webcite]
- [46]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
- [47]Haploview [http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview webcite]
- [48]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263-265.
- [49]Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, Friedrichs H, Radyushkin KA, El-Kordi A, Benseler F, Hannke K, Sperling S, Schwerdtfeger D, Thanhäuser I, Gerchen MF, Ghorbani M, Gutwinski S, Hilmes C, Leppert R, Ronnenberg A, Sowislo J, Stawicki S, Stödtke M, Szuszies C, Reim K, Riggert J, Eckstein F, Falkai P, Bickeböller H, Nave KA, et al.: Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch Gen Psychiatry 2010, 67(9):879-888.
- [50]Blom G: Statistical Estimates and Transformed Beta Variables. New York, NY: Wiley; 1958.
- [51]G*Power 3 [http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/ webcite]
- [52]Faul F, Erdfelder E, Lang AG, Buchner A: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007, 39(2):175-191.
- [53]Faul F, Erdfelder E, Buchner A, Lang AG: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 2009, 41(4):1149-1160.
- [54]Jurado MB, Rosselli M: The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev 2007, 17(3):213-233.
- [55]Morris RG, Rushe T, Woodruffe PW, Murray RM: Problem solving in schizophrenia: a specific deficit in planning ability. Schizophr Res 1995, 14(3):235-246.
- [56]Sullivan JR, Riccio CA, Castillo CL: Concurrent validity of the tower tasks as measures of executive function in adults: a meta-analysis. Appl Neuropsychol 2009, 16(1):62-75.
- [57]Dagher A, Owen AM, Boecker H, Brooks DJ: Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 1999, 122(10):1973-1987.
- [58]Zhu Y, Liu X, Wang H, Jiang T, Fang Y, Hu H, Wang G, Wang X, Liu Z, Zhang K: Reduced prefrontal activation during Tower of London in first-episode schizophrenia: a multi-channel near-infrared spectroscopy study. Neurosci Lett 2010, 478(3):136-140.
- [59]Joyce EM, Hutton SB, Mutsatsa SH, Barnes TR: Cognitive heterogeneity in first-episode schizophrenia. Br J Psychiatry 2005, 187(6):516-522.
- [60]Haut MW, Kuwabara H, Leach S, Arias RG: Neural activation during performance of number-letter sequencing. Appl Neuropsychol 2000, 7(4):237-242.
- [61]Prata DP, Mechelli A, Fu CH, Picchioni M, Kane F, Kalidindi S, McDonald C, Howes O, Kravariti E, Demjaha A, Toulopoulou T, Diforti M, Murray RM, Collier DA, McGuire PK: Opposite effects of catechol-O-methyltransferase Val158Met on cortical function in healthy subjects and patients with schizophrenia. Biol Psychiatry 2009, 65(6):473-480.
- [62]Allen Brain Atlas [http://www.brain-map.org webcite]
- [63]Kishi T, Moriwaki M, Kawashima K, Okochi T, Fukuo Y, Kitajima T, Furukawa O, Naitoh H, Fujita K, Iwata N: Investigation of clinical factors influencing cognitive function in Japanese schizophrenia. Neurosci Res 2010, 66(4):340-344.
- [64]Ogino S, Miyamoto S, Tenjin T, Kitajima R, Ojima K, Miyake N, Funamoto Y, Arai J, Tsukahara S, Ito Y, Tadokoro M, Anai K, Tatsunami S, Kubota H, Kaneda Y, Yamaguchi N: Effects of discontinuation of long-term biperiden use on cognitive function and quality of life in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35(1):78-83.
- [65]Fatjó-Vilas M, Papiol S, Estrada G, Bombín I, Peralta V, Rosa A, Parellada M, Miret S, Martín M, Lázaro L, Campanera S, Muñoz MJ, Lera-Miguel S, Arias B, Navarro ME, Castro-Fornieles J, Cuesta MJ, Arango C, Fañanás L: Dysbindin-1 gene contributes differentially to early- and adult-onset forms of functional psychosis. Am J Med Genet Part B 2011, 156B(3):322-333.
- [66]Donohoe G, Morris DW, Clarke S, McGhee KA, Schwaiger S, Nangle JM, Garavan H, Robertson IH, Gill M, Corvin A: Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 2007, 45(2):454-458.