BMC Microbiology | |
Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community? | |
Lucy Seldin2  Arie Fitzgerald Blank1  Celuta Sales Alviano2  Daniela Sales Alviano2  Diogo Jurelevicius2  Renata Estebanez Vollú2  Thais Freitas da Silva2  | |
[1] Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, Aracajú, SE CEP 49100-000, Brazil;Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro CEP 21941-590, Brazil | |
关键词: Plant-microorganism interaction; Endophytic bacteria and fungi; Leaf; Stem; Essential oil; Lippia sidoides; | |
Others : 1144465 DOI : 10.1186/1471-2180-13-29 |
|
received in 2012-11-10, accepted in 2013-01-30, 发布年份 2013 | |
【 摘 要 】
Background
Lippia sidoides Cham., also known as pepper-rosmarin, produces an essential oil in its leaves that is currently used by the pharmaceutical, perfumery and cosmetic industries for its antimicrobial and aromatic properties. Because of the antimicrobial compounds (mainly thymol and carvacrol) found in the essential oil, we believe that the endophytic microorganisms found in L. sidoides are selected to live in different parts of the plant.
Results
In this study, the endophytic microbial communities from the stems and leaves of four L. sidoides genotypes were determined using cultivation-dependent and cultivation-independent approaches. In total, 145 endophytic bacterial strains were isolated and further grouped using either ERIC-PCR or BOX-PCR, resulting in 76 groups composed of different genera predominantly belonging to the Gammaproteobacteria. The endophytic microbial diversity was also analyzed by PCR-DGGE using 16S rRNA-based universal and group-specific primers for total bacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria and 18S rRNA-based primers for fungi. PCR-DGGE profile analysis and principal component analysis showed that the total bacteria, Alphaproteobacteria, Betaproteobacteria and fungi were influenced not only by the location within the plant (leaf vs. stem) but also by the presence of the main components of the L. sidoides essential oil (thymol and/or carvacrol) in the leaves. However, the same could not be observed within the Actinobacteria.
Conclusion
The data presented here are the first step to begin shedding light on the impact of the essential oil in the endophytic microorganisms in pepper-rosmarin.
【 授权许可】
2013 da Silva et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150330153939378.pdf | 1695KB | download | |
Figure 6. | 73KB | Image | download |
Figure 5. | 24KB | Image | download |
Figure 4. | 38KB | Image | download |
Figure 3. | 53KB | Image | download |
Figure 2. | 114KB | Image | download |
Figure 1. | 79KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Botelho MA, Nogueira NA, Bastos GM, Fonseca SG, Lemos TL, Matos FJ, Montenegro D, Heukelbach J, Rao VS, Brito GA: Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res 2007, 40:349-356.
- [2]Martins ER, Castro DM, Castellani DC, Dias JE: Plantas Medicinais. Imprensa Universitária, Brazil: Universidade Federal de Viçosa - UFV; 1994:1-29.
- [3]Lemos TL, Craveiro AA, Alencar JW, Matos FJ, Clarck AM, MacChesney JD: Antimicrobial activity of essential oil of Brazilian plants. Phytother Res 1990, 4:82-84.
- [4]Oliveira FP, Lima EO, Siqueira-Júnior JP, Souza EL, Santos BHC, Barreto HM: Effectiveness of Lippia sidoides Cham. (Verbenaceae) essential oil in inhibiting the growth of Staphylococcus aureus strains isolated from clinical material. Braz J Pharmacogn 2006, 16:510-516.
- [5]Carvalho AF, Melo VM, Craveiro AA, Machado MI, Bantim MB, Rabelo EF: Larvicidal activity of the essential oil from Lippia sidoides Cham. against Aedes aegypti linn. Mem Inst Oswaldo Cruz 2003, 98:569-571.
- [6]Cavalcanti SC, Niculau Edos S, Blank AF, Câmara CA, Araújo IN, Alves PB: Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol 2010, 101:829-832.
- [7]Lima RK, Cardoso MG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL: Chemical composition and fumigant effect of essential oil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L.) (coleoptera: tenebrionidae). Ciênc agrotec 2011, 35:664-671.
- [8]Costa SMO, Lemos TLG, Rodrigues FFG, Pessoa ODL, Pessoa C, Montenegro RC, Braz-Filho R: Chemical constituents from Lippia sidoides and cytotoxic activity. J Nat Prod 2001, 64:792-795.
- [9]Morais SR, Oliveira TLS, Bara MTF, Conceição EC, Rezende MH, Ferri PH, de Paula JR: Chemical constituents of essential oil from Lippia sidoides Cham. (Verbenaceae) leaves cultivated in Hidrolândia, Goiás, Brazil. Int J Anal Chem 2012, 4. Article ID 363919
- [10]Fernandes LP, Éhen Z, Moura TF, Novák C, Sztatisz J: Characterization of Lippia sidoides oil extract-b-cyclodextrin complexes using combined thermoanalytical techniques. J Therm Anal Calorim 2004, 78:557-573.
- [11]Castro CE, Ribeiro JM, Diniz TT, Almeida AC, Ferreira LC, Martins ER, Duarte ER: Antimicrobial activity of Lippia sidoides Cham. (Verbenaceae) essential oil against Staphylococcus aureus and Escherichia coli. Rev Bras Plantas Med 2011, 13:293-297.
- [12]Bertea C, Camusso W: Anatomy, biochemistry, and physiology. In Vetiveria, The Genus Vetiveria . Edited by Maffei M. London: Taylor & Francis; 2002:19-43.
- [13]Adams RP, Habte M, Park S, Dafforn MR: Preliminary comparison of vetiver root essential oils from cleansed (bacteria- and fungus-free) versus non-cleansed (normal) vetiver plants. Biochem Syst Ecol 2004, 32:1137-1144.
- [14]Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Talà A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P: The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 2008, 10:2824-2841.
- [15]Marinho MJM, Albuquerque CC, Morais MB, Souza MCG, Silva KMB: Establishment of protocol for Lippia gracilis Schauer micropropagation. Rev Bras Plantas Med 2011, 13:246-252.
- [16]Blank AF, Oliveira TC, Santos RB, Niculau ES, Alves PB, Arrigoni-Blank M: Genotype - age interaction in pepper-rosmarin. In International Horticulture Congress 28, Seminar Abstracts . Lisboa; 2010:77.
- [17]Pitcher DG, Saunders NA, Owen RJ: Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989, 8:151-156.
- [18]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. New York, N.Y., USA: Cold Spring Harbor Laboratory Press; 1989.
- [19]Versalovic J, Schneider M, De Bruijn FJ, Lupski JR: Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994, 5:25-40.
- [20]De Bruijn FJ: Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 1992, 58:2180-2187.
- [21]Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM: Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In Molecular Microbiology Ecology Manual 3.3.2. Edited by Akkermans ADL, Van Elsas JD, Bruijn FJ. Dordrecht: Kluwer Academic Publishers; 1995:1-18.
- [22]Clinical and Laboratory Standards Institute (CLSI): Methods for dilution antimicrobial susceptibility tests. 4th edition. Wayne, PA, USA: Approved Standards, M7-A4; 2008.
- [23]Silva ACR, Lopes PM, Azevedo MMB, Costa DCM, Alviano CS, Alviano DS: Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17:6305-6316.
- [24]White TJ, Bruns TD, Lee S, Taylor J: Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In PCR protocols: a guide to methods and applications. Edited by Innis MA, Gelfand DH, Sninsky JJ, White TH. New York: Academic Press; 1990:315-322.
- [25]Gardes M, Bruns TD: ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 1993, 2:113-118.
- [26]Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H: Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 1996, 178:5636-5643.
- [27]Heuer H, Krsek M, Baker P, Smalla K, Wellington EM: Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 1997, 63:3233-3241.
- [28]Smit E, Leeflang P, Glandorf B, Van Elsas JD, Wernars K: Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 1999, 65:2614-2621.
- [29]Chelius MK, Triplett EW: The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 2001, 41:252-263.
- [30]Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonça-Hagler L, Smalla K: Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 2001, 232:167-180.
- [31]Dias ACF, Dini-Andreote F, Taketani RG, Tsai SM, Azevedo JL, Melo IS, Andreote FD: Archaeal communities in the sediments of the three contrasting mangroves. J Soils Sediments 2011, 8:1466-1476.
- [32]McCune B, Mefford MJ: PC-ORD: Multivariate analysis of ecological data. Oregon, USA: version 6.0 MjM Software, Gleneden Beach; 2011.
- [33]Monteiro JM, Vollú RE, Coelho MR, Alviano CS, Blank AF, Seldin L: Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres. J Microbiol 2009, 47:363-370.
- [34]Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SP: Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 2010, 60:167-171.
- [35]Franke IH, Fegan M, Hayward C, Leonard G, Sly LI: Molecular detection of Gluconacetobacter sacchari associated with the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) and the sugarcane leaf sheath microenvironment by FISH and PCR. FEMS Microbiol Ecol 2000, 131:61-71.
- [36]James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK: Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 2002, 15:894-906.
- [37]Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W: Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 2008, 55:415-424.
- [38]Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda L, Santoyo G: Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 2010, 9:2372-2380.
- [39]Asis CA Jr, Adachi K: Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan. Lett Appl Microbiol 2003, 38:19-23.
- [40]Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL: Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 2004, 6:1244-1251.
- [41]Appuhn A, Joergensen RG: Microbial colonisation of roots as a function of plant species. Soil Biol Biochem 2006, 38:1040-1051.
- [42]Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J: Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 2010, 42:2276-2281.
- [43]Adegboye MF, Babalola OO: Taxonomy and ecology of antibiotic producing actinomycetes. Afr J Agric Res 2012, 7:2255-2261.
- [44]Siqueira VM, Conti R, Araújo JM, Souza-Motta CM: Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 2011, 53:89-95.
- [45]Gazis R, Chaverri P: Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 2010, 3:240-254.