期刊论文详细信息
BMC Cell Biology
Characterization of dental pulp stem/stromal cells of Huntington monkey tooth germs
Anthony WS Chan1  Anderson HC Huang2  Shang-Hsun Yang1  Jinjing Yang1  Pei-Hsun Cheng1  Brooke R Snyder1 
[1] Department of Human Genetics, Emory University School of Medicine, 615 Michael St. Whitehead Building, Atlanta, GA 30322, USA;Department of Oral Pathology, School of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan, Republic of China
关键词: cell therapy;    transgenic HD monkeys;    Huntington's disease;    DPSCs;    animal model;    Adult stem cells;   
Others  :  857071
DOI  :  10.1186/1471-2121-12-39
 received in 2011-06-10, accepted in 2011-09-12,  发布年份 2011
PDF
【 摘 要 】

Background

Dental pulp stem/stromal cells (DPSCs) are categorized as adult stem cells (ASCs) that retain multipotent differentiation capabilities. DPSCs can be isolated from individuals at any age and are considered to be true personal stem cells, making DPSCs one of the potential options for stem cell therapy. However, the properties of DPSCs from individuals with an inherited genetic disorder, such as Huntington's disease (HD), have not been fully investigated.

Results

To examine if mutant huntingtin (htt) protein impacts DPSC properties, we have established DPSCs from tooth germ of transgenic monkeys that expressed both mutant htt and green fluorescent protein (GFP) genes (rHD/G-DPSCs), and from a monkey that expressed only the GFP gene (rG-DPSCs), which served as a control. Although mutant htt and oligomeric htt aggregates were overtly present in rHD/G-DPSCs, all rHD/G-DPSCs and rG-DPSCs shared similar characteristics, including self-renewal, multipotent differentiation capabilities, expression of stemness and differentiation markers, and cell surface antigen profile.

Conclusions

Our results suggest that DPSCs from Huntington monkeys retain ASC properties. Thus DPSCs derived from individuals with genetic disorders such as HD could be a potential source of personal stem cells for therapeutic purposes.

【 授权许可】

   
2011 Snyder et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723064214914.pdf 9520KB PDF download
129KB Image download
100KB Image download
73KB Image download
268KB Image download
【 图 表 】

【 参考文献 】
  • [1]Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S: Stem cell properties of human dental pulp stem cells. Journal of dental research 2002, 81(8):531-535.
  • [2]Cheng PH, Snyder B, Fillos D, Ibegbu CC, Huang AH, Chan AW: Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee. BMC cell biology 2008, 9:20. BioMed Central Full Text
  • [3]Gronthos S, Mankani M, Brahim J, Robey PG, Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(25):13625-13630.
  • [4]Huang AHC, Snyder BR, Cheng PH, Chan AWS: Putative dental pulp derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem cells (Dayton, Ohio) 2008, 26:2654-2663.
  • [5]Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S: Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem cells (Dayton, Ohio) 2008, 26(7):1787-1795.
  • [6]Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA: Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem cells (Dayton, Ohio) 2009, 27(9):2229-2237.
  • [7]Kiraly M, Kadar K, Horvathy DB, Nardai P, Racz GZ, Lacza Z, Varga G, Gerber G: Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 2011.
  • [8]Kiraly M, Porcsalmy B, Pataki A, Kadar K, Jelitai M, Molnar B, Hermann P, Gera I, Grimm WD, Ganss B, et al.: Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 2009, 55(5):323-332.
  • [9]Nesti C, Pardini C, Barachini S, D'Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F: Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain research 2011, 1367:94-102.
  • [10]Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, Palotas A, Kose GT: Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics J 2010, 10(2):105-113.
  • [11]Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA: Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. The European journal of neuroscience 2004, 19(9):2388-2398.
  • [12]Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ: Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(50):18171-18176.
  • [13]Arora V, Arora P, Munshi AK: Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent 2009, 33(4):289-294.
  • [14]Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS: Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 2009, 59(2):150-157.
  • [15]Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotas A: Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des 2009, 15(33):3908-3916.
  • [16]Yang KL, Chen MF, Liao CH, Pang CY, Lin PY: A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy. Cytotherapy 2009, 11(5):606-617.
  • [17]Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature genetics 1993, 4(4):393-397.
  • [18]Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al.: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature genetics 1993, 4(4):398-403.
  • [19]Sapp E, Schwarz C, Chase K, Bhide PG, Young AB, Penney J, Vonsattel JP, Aronin N, DiFiglia M: Huntingtin localization in brains of normal and Huntington's disease patients. Annals of neurology 1997, 42(4):604-612.
  • [20]Bradford H, Britto LR, Leal G, Katz J: Endodontic treatment of a Patient with Huntington's disease. Journal of endodontics 2004, 30(5):366-369.
  • [21]Jackowski J, Andrich J, Kappeler H, Zollner A, Johren P, Muller T: Implant-supported denture in a patient with Huntington's disease: interdisciplinary aspects. Spec Care Dentist 2001, 21(1):15-20.
  • [22]Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, et al.: Towards a transgenic model of Huntington's disease in a non-human primate. Nature 2008, 453(7197):921-924.
  • [23]Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA: Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem cells and development 2005, 14(4):440-451.
  • [24]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8(4):315-317.
  • [25]Huang AHC, Chan YK, Lin ML, Shieh TY, Chan AWS: Isolation and characterization of dental pulp stem cells from supernumerary tooth. Journal of Oral Pathology & Medicine 2008, 37(9):571-574.
  • [26]Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1977, 276:71-74.
  • [27]Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, et al.: Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005, 80(6):836-842.
  • [28]Laino G, d'Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G: A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 2005, 20(8):1394-1402.
  • [29]Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M: Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem cells (Dayton, Ohio) 2006, 24(11):2493-2503.
  • [30]Laino G, Graziano A, d'Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G: An approachable human adult stem cell source for hard-tissue engineering. Journal of cellular physiology 2006, 206(3):693-701.
  • [31]Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(38):14638-14643.
  • [32]Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ: Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(46):17438-17443.
  文献评价指标  
  下载次数:40次 浏览次数:32次