期刊论文详细信息
BMC Genomics
Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome
Alfredo Ruiz1  Vera L S Valente2  Alejandra Delprat1  Victor Hugo Valiati3  Juliana W Gonçalves2 
[1] Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain;Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), CP 15053, Porto Alegre, Rio Grande do Sul 91501-970, Brazil;Programa de Pós-Graduação em Biologia: Diversidade e Manejo de Vida Silvestre, Universidade do Vale do Rio dos Sinos (UNISINOS), CP 275, São Leopoldo, Rio Grande do Sul 93022-000, Brazil
关键词: Target site duplications;    P superfamily;    Terminal inverted repeats;    D. willistoni;    Transposable element;   
Others  :  1139581
DOI  :  10.1186/1471-2164-15-792
 received in 2014-04-26, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome.

Results

We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure.

Conclusions

There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral element in the genome. Galileo shows a significant insertion preference for a 15-bp palindromic TSM.

【 授权许可】

   
2014 Gonçalves et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150322012550967.pdf 1610KB PDF download
Figure 7. 59KB Image download
Figure 6. 131KB Image download
Figure 5. 60KB Image download
Figure 4. 93KB Image download
Figure 3. 71KB Image download
Figure 2. 58KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Brookfield JFY: The ecology of the genome - mobile DNA elements and their hosts. Nat Rev Genet 2005, 6:128-136.
  • [2]Feschotte C, Pritham EJ: DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 2007, 41:331-368.
  • [3]Feschotte C: The contribution of transposable elements to the evolution of regulatory networks. Nat Rev Genet 2008, 9:397-405.
  • [4]Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A: Generation of a Widespread Drosophila Inversion by a Transposable Element. Science 1999, 285:415-418.
  • [5]Casals F, Cáceres M, Ruiz A: The Foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol Bio Evol 2003, 20:674-685.
  • [6]Delprat A, Negre B, Puig M, Ruiz A: The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One 2009, 4:13.
  • [7]Marzo M, Puig M, Ruiz A: The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. PNAS 2008, 105:2957-2962.
  • [8]Marzo M, Bello X, Puig M, Maside X, Ruiz A: Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis. Mob DNA 2013, 4:1. BioMed Central Full Text
  • [9]Spassky B, Richmond RC, Perez Salas S, Pavlovsky O, Mourão CA, Hunter AS, Hoenigsberg H, Dobzhansky T, Ayala FJ: Geography of the sibling species related to Drosophila willistoni, and of the semispecies of the Drosophila paulistorum complex. Evolution 1971, 25:129-143.
  • [10]Dobzhansky T, Powell JR: The Willistoni Group of Sibling Species of Drosophila. In Handbook of Genetics. Edited by King RC. New York: Plenum Press; 1975:589-622.
  • [11]Da Cunha AB, Burla H, Dobzhansky T: Adaptative chromosomal polymorphism in Drosophila willistoni. Evolution 1950, 4:212-235.
  • [12]Da Cunha AB, Dobzhanky T, Pavlovsky O, Spassky B: Genetics on natural populations. XXVIII. Suplementary data on the chromosomal polymorphism in Drosophila willistoni in its relation to the environment. Evolution 1959, 13:389-404.
  • [13]Da Cunha AB, Dobzhansky T: A further study of chromosomal polymorphism in Drosophila willistoni in the relation to the environment. Evolution 1954, 8:119-134.
  • [14]Valente VLS, Morales NB: New inversions and qualitative description of inversion heterozygotes in natural populations of Drosophila willistoni. Rev Bras Genet 1985, 8:167-173.
  • [15]Valente VLS, Araújo AM: Chromosomal polymorphism, climatic factors and variation in population size of Drosophila willistoni. Heredity 1986, 57:149-160.
  • [16]Valente VLS, Ruszczyk A, Santos RA: Chromosomal polymorphism in urban Drosophila willistoni. Rev Bras Genet 1993, 16:307-319.
  • [17]Valente VLS, Rohde C, Valiati VH, Morales NB, Goñi B: Chromosomal inversions occurring in Uruguayan populations of Drosophila willistoni. Dros Inf Serv 2001, 84:55-59.
  • [18]Valente VLS, Goñi B, Valiati VH, Rohde C, Morales NB: Chromosomal polymorphism in Drosophila willistoni populations from Uruguay. Genet Mol Bio 2003, 26:163-173.
  • [19]Rohde C, Cristina A, Garcia L, Valiati VH, Valente VLS: Chromosomal evolution of sibling species of the Drosophila willistoni group. I. Chromosomal arm IIR (Muller’s element B ). Genetica 2006, 126:77-88.
  • [20]Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM: Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 2008, 179:1657-1680.
  • [21]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33:116-120.
  • [22]Yuan Y-W, Wessler SR: The catalytic of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci U S A 2011, 108:1-6.
  • [23]O’Hare K, Rubin GM: Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 1983, 34:25-35.
  • [24]Hagemann S, Miller JW, Pinsker W: Identification of a complete P-element in the genome of Drosophila bifasciata. Nucleic Acids Res 1992, 20:409-413.
  • [25]Holyoake AJ, Kidwell MG: Vege and Mar: two novel hAT MITE families from Drosophila willistoni. Mol Biol Evol 2003, 20:163-167.
  • [26]Kapitonov VV, Jurka J: Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci 2003, 100:6569-6574.
  • [27]Reiss D, Quesneville H, Nouaud D, Andrieu O, Anxolabehere D: Hoppel, a P-like element without introns: a P-element ancestral structure or a retrotranscription derivative? Mol Biol Evol 2003, 20:869-879.
  • [28]Sharp PM, Li WH: On the rate of DNA sequences evolution in Drosophila. J Mol Evol 1989, 28:398-402.
  • [29]Cáceres M, Puig M, Ruiz A: Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 2001, 11:1353-1364.
  • [30]Linheiro RS, Bergman CM: Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS One 2012, 7:e30008.
  • [31]Rius N, Delprat A, Ruiz A: A divergent P-element and its associated MITE, BuT5, generate chromosomal inversions and are widespread within the Drosophila repleta species group. Genome Biol Evol 2013, 5:1127-1141.
  • [32]Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J: High- frequency P element loss in Drosophila is homolog dependent. Cell 1990, 62:515-525.
  • [33]Brunet F, Giraud T, Godin F, Capy P: Do deletions of Mos1-like elements occur randomly in the Drosophilidae family? J Mol Evol 2002, 54:227-234.
  • [34]Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A: Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 1990, 124:339-355.
  • [35]Regner LP, Pereira MS, Alonso CE, Abdelhay E, Valente VL: Genomic distribution of P elements in Drosophila willistoni and a search for their relationship with chromosomal inversions. J Hered 1996, 87:191-198.
  • [36]Deprá M, Ludwig A, Valente VLS, Loreto ELS: Mar, a MITE family of hAT transposons in Drosophila. Mob DNA 2012, 3:13. BioMed Central Full Text
  • [37]Moschetti R, Chlamydas S, Marsano RM, Caizzi R: Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons. Mol Genet Genomics 2008, 279:451-461.
  • [38]Ludwig A, Valente VLS, Loreto ELS: Multiple invasions of Errantivirus in the genus Drosophila. Insect Mol Biol 2008, 17:113-124.
  • [39]Quesneville H, Nouaud D, Anxolabehere D: P elements and MITE relatives in the whole genome sequence of Anopheles gambiae. BMC Genomics 2006, 7:214. BioMed Central Full Text
  • [40]Loreto ELS, Zambra FMB, Ortiz MF, Robe LJ: New Drosophila P-like elements and reclassification of Drosophila P-elements subfamilies. Mol Genet Genomics 2012, 287:531-540.
  • [41]Robertson HM, MacLeod EG: Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 1993, 2:125-139.
  • [42]Robertson HM, Martos R: Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. Gene 1997, 205:219-228.
  • [43]Loreto ELS, Carareto CM, Capy P: Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 2008, 100:545-554.
  • [44]Ehrman L, Powell JR: The Drosophila Willistoni Species Group. In The Genetics and Biology of Drosophila. Edited by Ashburner M, Carson HL, Thompson JN. New York: Academic Press; 1982:193-225.
  • [45]Cordeiro AR, Winge H: Levels of Evolutionary Divergence of Drosophila Willistoni Sibling Species. In Genetics of Natural Populations: The Continuing Importance of Theodosius Dobzhansky. Edited by Levine L. New York: Columbia University Press; 1995:262-280.
  • [46]Robe LJ, Cordeiro J, Loreto ELS, Valente VLS: Taxonomic boundaries, phylogenetic relationships and biogeography of the Drosophila willistoni subgroup (Diptera : Drosophilidae). Genetica 2010, 138:601-617.
  • [47]Silva JC, Kidwell MG: Horizontal transfer and selection in the evolution of P elements. Mol Bio Evol 2000, 17:1542-1557.
  • [48]Casals F, Cáceres M, Manfrin MH, González J, Ruiz A: Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 2005, 169:2047-2059.
  • [49]Liao GC, Rehm EJ, Rubin GM: Insertion site preferences of the P transposable element in Drosophila melanogaster. PNAS 2000, 97:3347-3351.
  • [50]A database of drosophila genes & genomes http://flybase.org/blast webcite
  • [51]Geneious http://www.geneious.com webcite
  • [52]Basic local alignment search tool http://blast.ncbi.nlm.nih.gov/Blast.cgi webcite
  • [53]RepeatMasker http://www.repeatmasker.org webcite
  • [54]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-580.
  • [55]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
  • [56]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [57]Ronquist F, Huelsenbeck JP: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [58]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
  • [59]Rodríguez FJ, Oliver JL, Marín A, Medina JR: The general stochastic model of nucleotide substitution. J Theor Biol 1990, 142:485-501.
  • [60]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [61]The mfold Web server http://www.bioinfo.rpi.edu/applications/mfold webcite
  文献评价指标  
  下载次数:8次 浏览次数:2次