期刊论文详细信息
BMC Cell Biology
Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion
Susanne F Önel2  Anne Holz1  Renate Renkawitz-Pohl2  Susanne Berger6  Michael Pütz5  Dörthe Kesper7  Georg Wolfstetter4  Matthias Jacobs2  Detlev Buttgereit2  Anja Rudolf3 
[1] Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Stephanstraße 24, Giessen 35390, Germany;Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, Marburg 35043, Germany;Present address: INSERM U1016 Institut Cochin, Département Génétique et Développement, 24 Rue du Faubourg Saint Jacques, Paris 75014, France;Present address: Department of Molecular Biology, Building 6 L, Umeå University, Umeå 90187, Sweden;Present address: Institute for Neurology, Clinical Neurobiology, FB20 Philipps-Universität Marburg, Baldingerstraße, Marburg 35043, Germany;Present address: Life and Medical Sciences Institute, Universität Bonn, Carl-Troll-Straße 31, Bonn 53115, Germany;Present address: Institute of Pathobiochemistry and Molecular Diagnostics, Philipps-Universität Marburg, Hans-Meerwein-Straße 2, Marburg 35043, Germany
关键词: Kette/Nap-1;    Rols;    Blow;    Scar/Wave;    Differential transcriptional control;    Site-specific mRNA localization;    Myoblast fusion;    FuRMAS;    Actin regulation;    Visceral musculature;   
Others  :  1230196
DOI  :  10.1186/1471-2121-15-27
 received in 2013-09-10, accepted in 2014-06-25,  发布年份 2014
【 摘 要 】

Background

The visceral musculature of Drosophila larvae comprises circular visceral muscles tightly interwoven with longitudinal visceral muscles. During myogenesis, the circular muscles arise by one-to-one fusion of a circular visceral founder cell (FC) with a visceral fusion-competent myoblast (FCM) from the trunk visceral mesoderm, and longitudinal muscles arise from FCs of the caudal visceral mesoderm. Longitudinal FCs migrate anteriorly under guidance of fibroblast growth factors during embryogenesis; it is proposed that they fuse with FCMs from the trunk visceral mesoderm to give rise to syncytia containing up to six nuclei.

Results

Using fluorescence in situ hybridization and immunochemical analyses, we investigated whether these fusion events during migration use the same molecular repertoire and cellular components as fusion-restricted myogenic adhesive structure (FuRMAS), the adhesive signaling center that mediates myoblast fusion in the somatic mesoderm. Longitudinal muscles were formed by the fusion of one FC with Sns-positive FCMs, and defects in FCM specification led to defects in longitudinal muscle formation. At the fusion sites, Duf/Kirre and the adaptor protein Rols7 accumulated in longitudinal FCs, and Blow and F-actin accumulated in FCMs. The accumulation of these four proteins at the fusion sites argues for FuRMAS-like adhesion and signaling centers. Longitudinal fusion was disturbed in rols and blow single, and scar wip double mutants. Mutants of wasp or its interaction partner wip had no defects in longitudinal fusion.

Conclusions

Our results indicated that all embryonic fusion events depend on the same cell-adhesion molecules, but that the need for Rols7 and regulators of F-actin distinctly differs. Rols7 was required for longitudinal visceral and somatic myoblast fusion but not for circular visceral fusion. Importantly, longitudinal fusion depended on Kette and SCAR/Wave but was independent of WASp-dependent Arp2/3 activation. Thus, the complexity of the players involved in muscle formation increases from binucleated circular muscles to longitudinal visceral muscles to somatic muscles.

【 授权许可】

   
2014 Rudolf et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 7. 605KB Image download
Figure 6. 144KB Image download
Figure 5. 273KB Image download
Figure 4. 188KB Image download
Figure 3. 125KB Image download
Figure 2. 224KB Image download
Figure 1. 202KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Abmayr SM, Pavlath GK: Myoblast fusion: lessons from flies and mice. Development 2012, 139:641-656.
  • [2]Maqbool T, Jagla K: Genetic control of muscle development: learning from Drosophila. J Muscle Res Cell Motil 2007, 28:397-407.
  • [3]Campos-Ortega JA, Hartenstein V: The embryonic development of Drosophila melanogaster. Berlin: Springer-Verlag; 1985.
  • [4]Kusch T, Reuter R: Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling. Development 1999, 126:3991-4003.
  • [5]Goldstein MA, Burdette WJ: Striated visceral muscle of drosophila melanogaster. J Morphol 1971, 134:315-334.
  • [6]Klapper R: The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis. Mech Dev 2000, 95:47-54.
  • [7]Klapper R, Heuser S, Strasser T, Janning W: A new approach reveals syncytia within the visceral musculature of Drosophila melanogaster. Development 2001, 128:2517-2524.
  • [8]San Martin B, Ruiz-Gómez M, Landgraf M, Bate M: A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development 2001, 128:3331-3338.
  • [9]Sandborn EB, Duclos S, Messier PE, Roberge JJ: Atypical intestinal striated muscle in Drosophila melanogaster. J Ultrastruct Res 1967, 18:695-702.
  • [10]Schröter RH, Buttgereit D, Beck L, Holz A, Renkawitz-Pohl R: Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila. Differentiation 2006, 74:608-621.
  • [11]Klapper R, Stute C, Schomaker O, Strasser T, Janning W, Renkawitz-Pohl R, Holz A: The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech Dev 2002, 110:85-96.
  • [12]Azpiazu N, Frasch M: tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 1993, 7:1325-1340.
  • [13]Tremml G, Bienz M: Homeotic gene expression in the visceral mesoderm of Drosophila embryos. EMBO J 1989, 8:2677-2685.
  • [14]Zaffran S, Küchler A, Lee HH, Frasch M: biniou (FoxF), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila. Genes Dev 2001, 15:2900-2915.
  • [15]Englund C, Lorén CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B, Palmer RH: Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 2003, 425:512-516.
  • [16]Lee HH, Norris A, Weiss JB, Frasch M: Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 2003, 425:507-512.
  • [17]Lorén CE, Englund C, Grabbe C, Hallberg B, Hunter T, Palmer RH: A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep 2003, 4:781-786.
  • [18]Popichenko D, Hugosson F, Sjögren C, Dogru M, Yamazaki Y, Wolfstetter G, Schönherr C, Fallah M, Hallberg B, Nguyen H, Palmer RH: Jeb/Alk signalling regulates the Lame duck GLI family transcription factor in the Drosophila visceral mesoderm. Development 2013, 140:3156-3166.
  • [19]Stute C, Schimmelpfeng K, Renkawitz-Pohl R, Palmer R, Holz A: Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as receptor for Jeb signalling. Development 2004, 131:743-754.
  • [20]Georgias C, Wasser M, Hinz U: A basic-helix-loop-helix protein expressed in precursors of Drosophila longitudinal visceral muscles. Mech Dev 1997, 69:115-124.
  • [21]Ismat A, Schaub C, Reim I, Kirchner K, Schultheis D, Frasch M: HLH54F is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of Drosophila. Development 2010, 137:3107-3117.
  • [22]Kadam S, Ghosh S, Stathopoulos A: Synchronous and symmetric migration of Drosophila caudal visceral mesoderm cells requires dual input by two FGF ligands. Development 2012, 139:699-708.
  • [23]Mandal L, Dumstrei K, Hartenstein V: Role of FGFR signaling in the morphogenesis of the Drosophila visceral musculature. Dev Dyn 2004, 231:342-348.
  • [24]Reim I, Hollfelder D, Ismat A, Frasch M: The FGF8-related signals Pyramus and Thisbe promote pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells. Dev Biol 2012, 368:28-43.
  • [25]Bour BA, Chakravarti M, West JM, Abmayr SM: Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 2000, 14:1498-1511.
  • [26]Ruiz-Gómez M, Coutts N, Price A, Taylor MV, Bate M: Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 2000, 102:189-198.
  • [27]Strünkelnberg M, Bonengel B, Moda LM, Hertenstein A, de Couet HG, Ramos RG, Fischbach KF: rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 2001, 128:4229-4239.
  • [28]Kreisköther N, Reichert N, Buttgereit D, Hertenstein A, Fischbach K, Renkawitz-Pohl R: Drosophila rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs. J Muscle Res Cell Motil 2006, 27:93-106.
  • [29]Önel S-F, Dottermusch C, Sickmann A, Buttgereit D, Renkawitz-Pohl R: Role of the actin cytoskeleton within FuRMAS during Drosophila myoblast fusion and first functionally conserved factors in vertebrates. In Cell Fusions: Regulation and Control. Edited by Larsson I. Heidelberg, Berlin: Springer; 2011:137-170.
  • [30]Sens KL, Zhang S, Jin P, Duan R, Zhang G, Luo F, Parachini L, Chen EH: An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J Cell Biol 2010, 191:1013-1027.
  • [31]Jin P, Duan R, Luo F, Zhang G, Hong SN, Chen EH: Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell 2011, 20:623-638.
  • [32]Kesper D, Stute C, Buttgereit D, Kreisköther N, Vishnu S, Fischbach K, Renkawitz-Pohl R: Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev Dyn 2007, 236:404-415.
  • [33]Schäfer G, Weber S, Holz A, Bogdan S, Schumacher S, Müller A, Renkawitz-Pohl R, Onel S: The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev Biol 2007, 304:664-674.
  • [34]Schröter R, Lier S, Holz A, Bogdan S, Klämbt C, Beck L, Renkawitz-Pohl R: kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila. Development 2004, 131:4501-4509.
  • [35]Richardson BE, Beckett K, Nowak SJ, Baylies MK: SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 2007, 134:4357-4367.
  • [36]Berger S, Schäfer G, Kesper D, Holz A, Eriksson T, Palmer R, Beck L, Klämbt C, Renkawitz-Pohl R, Onel S: WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J Cell Sci 2008, 121:1303-1313.
  • [37]Gildor B, Massarwa R, Shilo BZ, Schejter ED: The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion. EMBO Rep 2009, 10:1043-1050.
  • [38]Eriksson T, Varshney G, Aspenstrom P, Palmer RH: Characterisation of the role of Vrp1 in cell fusion during the development of visceral muscle of Drosophila melanogaster. BMC Dev Biol 2010, 10:86. BioMed Central Full Text
  • [39]Bonn BR, Rudolf A, Hornbruch-Freitag C, Daum G, Kuckwa J, Kastl L, Buttgereit D, Renkawitz-Pohl R: Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7. Exp Cell Res 2013, 319:402-416.
  • [40]Chen EH, Olson EN: Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell 2001, 1:705-715.
  • [41]Menon SD, Chia W: Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev Cell 2001, 1:691-703.
  • [42]Önel S, Renkawitz-Pohl R: FuRMAS: triggering myoblast fusion in Drosophila. Dev Dyn 2009, 238:1513-1525.
  • [43]Rau A, Buttgereit D, Holz A, Fetter R, Doberstein SK, Paululat A, Staudt N, Skeath J, Michelson AM, Renkawitz-Pohl R: rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 2001, 128:5061-5073.
  • [44]Doberstein SK, Fetter RD, Mehta AY, Goodman CS: Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol 1997, 136:1249-1261.
  • [45]Hummel T, Leifker K, Klämbt C: The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization. Genes Dev 2000, 14:863-873.
  • [46]Nose A, Isshiki T, Takeichi M: Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene. Development 1998, 125:215-223.
  • [47]Haralalka S, Shelton C, Cartwright HN, Katzfey E, Janzen E, Abmayr SM: Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila. Development 2011, 138:1551-1562.
  • [48]Morin X, Daneman R, Zavortink M, Chia W: A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 2001, 98:15050-15055.
  • [49]Susic-Jung L, Hornbruch-Freitag C, Kuckwa J, Rexer KH, Lammel U, Renkawitz-Pohl R: Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster. Dev Biol 2012, 370:86-97.
  • [50]Massarwa R, Carmon S, Shilo BZ, Schejter ED: WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell 2007, 12:557-569.
  • [51]Patel NH, Snow PM, Goodman CS: Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell 1987, 48:975-988.
  • [52]Leiss D, Hinz U, Gasch A, Mertz R, Renkawitz-Pohl R: Beta 3 tubulin expression characterizes the differentiating mesodermal germ layer during Drosophila embryogenesis. Development 1988, 104:525-531.
  • [53]Nguyen HT, Bodmer R, Abmayr SM, McDermott JC, Spoerel NA: D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis. Proc Natl Acad Sci U S A 1994, 91:7520-7524.
  • [54]Lécuyer E, Parthasarathy N, Krause HM: Fluorescent in situ hybridization protocols in Drosophila embryos and tissues. Methods Mol Biol 2008, 420:289-302.
  • [55]Michiels F, Gasch A, Kaltschmidt B, Renkawitz-Pohl R, Michiels F, Gasch A, Kaltschmidt B, Renkawitz-Pohl R: A 14 bp promotor element directs the testis specificity of the Drosophila beta 2 tubulin. Gene. EMBO J 1989, 8:1559-1565.
  • [56]Thummel CS, Boulet AM, Lipshitz HD: Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene 1988, 74:445-456.
  • [57]Kulke M, Neagoe C, Kolmerer B, Minajeva A, Hinssen H, Bullard B, Linke WA: Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. J Cell Biol 2001, 154:1045-1057.
  • [58]Lakey A, Labeit S, Gautel M, Ferguson C, Barlow DP, Leonard K, Bullard B: Kettin, a large modular protein in the Z-disc of insect muscles. EMBO J 1993, 12:2863-2871.
  • [59]van Straaten M, Goulding D, Kolmerer B, Labeit S, Clayton J, Leonard K, Bullard B: Association of kettin with actin in the Z-disc of insect flight muscle. J Mol Biol 1999, 285:1549-1562.
  • [60]Friedrich MV, Schneider M, Timpl R, Baumgartner S: Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression. Eur J Biochem 2000, 267:3149-3159.
  • [61]Urbano JM, Domínguez-Giménez P, Estrada B, Martín-Bermudo MD: PS integrins and laminins: key regulators of cell migration during Drosophila embryogenesis. PLoS One 2011, 6:e23893.
  • [62]Wolfstetter G, Holz A: The role of LamininB2 (LanB2) during mesoderm differentiation in Drosophila. Cell Mol Life Sci 2011, 69:267-282.
  • [63]Duan H, Skeath JB, Nguyen HT: Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development 2001, 128:4489-4500.
  • [64]Ismail AM, Padrick SB, Chen B, Umetani J, Rosen MK: The WAVE regulatory complex is inhibited. Nat Struct Mol Biol 2009, 16:561-563.
  • [65]Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED: SCAR is a primary regulator of Arp2/3-dependent morphological event in Drosophila. J Cell Biol 2002, 156:689-701.
  • [66]Erickson MR, Galletta BJ, Abmayr SM: Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol 1997, 138:589-603.
  • [67]Rushton E, Drysdale R, Abmayr SM, Michelson AM, Bate M: Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 1995, 121:1979-1988.
  • [68]Menon SD, Osman Z, Chenchill K, Chia W: A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila. J Cell Biol 2005, 169:909-920.
  • [69]Kim S, Shilagardi K, Zhang S, Hong SN, Sens KL, Bo J, Gonzalez GA, Chen EH: A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell 2007, 12:571-586.
  • [70]Dettman RW, Turner FR, Raff EC: Genetic analysis of the Drosophila beta3-tubulin gene demonstrates that the microtubule cytoskeleton in the cells of the visceral mesoderm is required for morphogenesis of the midgut endoderm. Dev Biol 1996, 177:117-135.
  • [71]Pütz M, Kesper D, Buttgereit D, Renkawitz-Pohl R: In Drosophila melanogaster, the rolling pebbles isoform 6 (Rols6) is essential for proper Malpighian tubule morphology. Mech Dev 2005, 122:1206-1217.
  文献评价指标  
  下载次数:8次 浏览次数:11次