BMC Evolutionary Biology | |
Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish | |
Axel Meyer2  Henrik Kusche2  Andreas F Kautt2  Gonzalo Machado-Schiaffino1  | |
[1] Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany;International Max Planck Research School for Organismal Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany | |
关键词: Speciation; Benthic-limnetic; Parallel evolution; | |
Others : 1121704 DOI : 10.1186/s12862-015-0287-3 |
|
received in 2014-10-02, accepted in 2015-01-15, 发布年份 2015 | |
【 摘 要 】
Background
The enormous diversity found in East African cichlid fishes in terms of morphology, coloration, and behavior have made them a model for the study of speciation and adaptive evolution. In particular, haplochromine cichlids, by far the most species-rich lineage of cichlids, are a well-known textbook example for parallel evolution. Southwestern Uganda is an area of high tectonic activity, and is home to numerous crater lakes. Many Ugandan crater lakes were colonized, apparently independently, by a single lineage of haplochromine cichlids. Thereby, this system could be considered a natural experiment in which one can study the interaction between geographical isolation and natural selection promoting phenotypic diversification.
Results
We sampled 13 crater lakes and six potentially-ancestral older lakes and, using both mitochondrial and microsatellite markers, discovered strong genetic and morphological differentiation whereby (a) geographically close lakes tend to be genetically more similar and (b) three different geographic areas seem to have been colonized by three independent waves of colonization from the same source population. Using a geometric morphometric approach, we found that body shape elongation (i.e. a limnetic morphology) evolved repeatedly from the ancestral deeper-bodied benthic morphology in the clear and deep crater lake habitats.
Conclusions
A pattern of strong genetic and morphological differentiation was observed in the Ugandan crater lakes. Our data suggest that body shape changes have repeatedly evolved into a more limnetic-like form in several Ugandan crater lakes after independent waves of colonization from the same source population. The observed morphological changes in crater lake cichlids are likely to result from a common selective regime.
【 授权许可】
2015 Machado-Schiaffino et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150213010302985.pdf | 1042KB | download | |
Figure 4. | 71KB | Image | download |
Figure 3. | 76KB | Image | download |
Figure 2. | 32KB | Image | download |
Figure 1. | 67KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Meyer A: Phylogenetic-relationships and evolutionary processes in East-African cichlid fishes. Trends Ecol Evol 1993, 8(8):279-84.
- [2]Kocher TD: Adaptive evolution and explosive speciation: The cichlid fish model. Nat Rev Genet 2004, 5(4):288-98.
- [3]Henning F, Meyer A: The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annual Rev Genomics Human Genetics 2014, 15:417-41.
- [4]Salzburger W, Mack T, Verheyen E, Meyer A: Out of Tanganyika: Genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol 2005, 5:17. BioMed Central Full Text
- [5]Meyer A, Kocher TD, Basasibwaki P, Wilson AC: Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial-DNA sequences. Nature 1990, 347(6293):550-3.
- [6]Verheyen E, Salzburger W, Snoeks J, Meyer A: Origin of the superflock of cichlid fishes from Lake Victoria. East Africa Sci 2003, 300(5617):325-9.
- [7]Elmer KR, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A: Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proc Natl Acad Sci U S A 2009, 106(32):13404-9.
- [8]Seehausen O: Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14 600 year history for its cichlid species flock. Proc R Soc B-Biol Sci 2002, 269(1490):491-7.
- [9]Stiassny MLJ, Meyer A: Cichlids of the Rift lakes. SciAm 1999, 280(2):64-9.
- [10]McCune AR, Lovejoy NR: The relative rate of sympatric and allopatric speciation in fishes: tests using DNA sequence divergence between sister species among clades. In Endless Forms : Species and Speciation. Edited by Howard DJ, Berlocher SH. Oxford University Press, New York; 1998:172-85.
- [11]Kocher TD, Conroy JA, McKaye KR, Stauffer JR: Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 1993, 2(2):158-65.
- [12]Ruber L, Verheyen E, Meyer A: Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc Natl Acad Sci U S A 1999, 96(18):10230-5.
- [13]Schluter D, Nagel LM: Parallel speciation by natural-selection. Am Nat 1995, 146(2):292-301.
- [14]Losos JB: Convergence, adaptation and constraint. Evolution 2011, 65(7):1827-40.
- [15]Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al.: The genomic basis of adaptive evolution in threespine sticklebacks. Nature 2012, 484(7392):55-61.
- [16]Mahler DL, Ingram T, Revell LJ, Losos JB: Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 2013, 341(6143):292-5.
- [17]Elmer KR, Kusche H, Lehtonen TK, Meyer A: Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos Trans R Soc B-Biol Sci 2010, 365(1547):1763-82.
- [18]Elmer KR, Meyer A: Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 2011, 26(6):298-306.
- [19]Boven A, Pasteels P, Punzalan LE, Yamba TK, Musisi JH: Quaternary perpotassic magmatism in Uganda (Toro-Ankole Volcanic Province): age assessment and significance for magmatic evolution along the East African Rift. J Afr Earth Sci 1998, 26(3):463-76.
- [20]Sato A, Takezaki N, Tichy H, Figueroa F, Mayer WE, Klein J: Origin and speciation of haplochromine fishes in east african crater lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Mol Biol Evol 2003, 20(9):1448-62.
- [21]Samonte IE, Satta Y, Sato A, Tichy H, Takahata N, Klein J: Gene flow between species of Lake Victoria haplochromine fishes. Mol Biol Evol 2007, 24(9):2069-80.
- [22]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14(8):2611-20.
- [23]Coyne JA, Orr HA: Speciation. Sinauer, Sunderland, Massachusetts; 2004.
- [24]Mayr E: Systematics and the Origin of Species from the Viewpoint of a Zoologist. Harvard University Press, Cambridge, MA; 1942.
- [25]Mayr E: Animal Species and Evolution. Belknap Press of Harvard University Press, Cambridge; 1963.
- [26]Wootton RJ: Ecology of Teleost Fishes. Chapman and Hall, London; 1990.
- [27]Landry L, Bernatchez L: Role of epibenthic resource opportunities in the parallel evolution of lake whitefish species pairs (Coregonus sp.). J Evol Biol 2010, 23(12):2602-13.
- [28]Gow JL, Rogers SM, Jackson M, Schluter D: Ecological predictions lead to the discovery of a benthic-limnetic sympatric species pair of threespine stickleback in little quarry lake, British Columbia. Can J Zool-Rev Can Zool 2008, 86(6):564-71.
- [29]Schluter D: The Ecology of Adaptive Radiation. Oxford University Press, Oxford; 2000.
- [30]Barrett RDH, Rogers SM, Schluter D: Natural selection on a major armor gene in threespine stickleback. Science 2008, 322(5899):255-7.
- [31]Alberch P: Ontogenesis and morphological diversification. Am Zool 1980, 20(4):653-67.
- [32]Meyer A: Phenotypic plasticity and heterochrony in Cichlasoma-managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 1987, 41(6):1357-69.
- [33]Schluter D, McPhail JD: Ecological character displacement and speciation in sticklebacks. Am Nat 1992, 140(1):85-108.
- [34]Ostbye K, Amundsen PA, Bernatchez L, Klemetsen A, Knudsen R, Kristoffersen R, et al.: Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol Ecol 2006, 15(13):3983-4001.
- [35]Malmquist HJ, Snorrason SS, Skulason S, Jonsson B, Sandlund OT, Jonasson PM: Diet differentiation in polymorphic arctic charr in Thingvallavatn. Iceland J Anim Ecol 1992, 61(1):21-35.
- [36]Robinson BW, Wilson DS: Character release and displacement in fishes - a neglected literature. Am Nat 1994, 144(4):596-627.
- [37]Kautt AF, Elmer KR, Meyer A: Genomic signatures of divergent selection and speciation patterns in a natural experiment', the young parallel radiations of Nicaraguan crater lake cichlid fishes. Mol Ecol 2012, 21(19):4770-86.
- [38]Meyer A: Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma-citrinellum (pisces, cichlidae). Biol J Linnean Soc 1990, 39(3):279-99.
- [39]Hulsey CD, Roberts RJ, Loh YHE, Rupp MF, Streelman JT: Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol Evol 2013, 3(7):2262-72.
- [40]Kusche H, Recknagel H, Elmer KR, Meyer A: Crater lake cichlids individually specialize along the benthic- limnetic axis. Ecol Evol 2014, 4(7):1127-39.
- [41]Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR, Henning F, et al.: Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol Ecol 2014, 23(7):1828-45.
- [42]Seehausen O: African cichlid fish: a model system in adaptive radiation research. Proc R Soc B-Biol Sci 2006, 273(1597):1987-98.
- [43]Martin CH: Strong assortative mating by diet, color, size, and morphology but limited progress toward sympatric speciation in a classic example: Cameroon crater lake cichlids. Evolution 2013, 67(7):2114-23.
- [44]Wagner CE, Harmon LJ, Seehausen O: Ecological opportunity and sexual selection together predict adaptive radiation. Nature 2012, 487(7407):366-U124.
- [45]Schliewen UK, Tautz D, Paabo S: Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 1994, 368(6472):629-32.
- [46]Barluenga M, Meyer A: Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol Biol 2010, 10:326. BioMed Central Full Text
- [47]Recknagel H, Elmer KR, Meyer A: Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes. Evolution 2014, 68:2145-55.
- [48]Barluenga M, Stolting KN, Salzburger W, Muschick M, Meyer A: Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 2006, 439(7077):719-23.
- [49]Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D: Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol Ecol 2001, 10(6):1471-88.
- [50]Bruford MW, Hanotte O, Brookfield JFY, Burke T: Multilocus and single locus DNA fingerprinting. In Molecular Genetics Analysis of Populations: A Practical Approach. Edited by Hoelzel AR. Oxford University Press, Oxford; 1998:287-336.
- [51]Sanetra M, Henning F, Fukamachi S, Meyer A: A microsatellite-based genetic linkage Map of the cichlid fish, astatotilapia burtoni (teleostei): a comparison of genomic architectures among rapidly speciating cichlids. Genetics 2009, 182(1):387-97.
- [52]Wu L, Kaufman L, Fuerst PA: Isolation of microsatellite markers in Astatoreochromis alluaudi and their cross-species amplifications in other African cichlids. Mol Ecol 1999, 8(5):895-7.
- [53]Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A: Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc R Soc B-Biol Sci 1996, 263(1376):1589-98.
- [54]Kellogg KA, Markert JA, Stauffer JR, Kocher TD: Microsatellite variation demonstrates multiple paternity in lekking cichlid fishes from lake Malawi, africa. Proc R Soc B-Biol Sci 1995, 260(1357):79-84.
- [55]Meyer A, Morrissey JM, Schartl M: Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 1994, 368(6471):539-42.
- [56]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-8.
- [57]Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-7.
- [58]Posada D, Crandall K: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14:817-8.
- [59]Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 2005, 1:47-50.
- [60]Nei M: Molecular Evolutionary Genetics. Columbia University Press, New York; 1987.
- [61]Teacher AGF, Griffiths DJ: HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 2011, 11(1):151-3.
- [62]Schneider S, Roessli D, Excoffier L: Arlequin ver. 2000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland; 2000.
- [63]Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147(2):915-25.
- [64]Schneider S, Excoffier L: Estimation of demographic parameters from the distribution of pairwise differenced when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 1999, 152:1079-89.
- [65]Nielsen R, Wakeley JW: Distinguishing migration from isolation: an MCMC approach. Genetics 2001, 158:885-96.
- [66]Koblmuller S, Duftner N, Sefc KM, Aigner U, Rogetzer M, Sturmbauer C: Phylogeographic structure and gene flow in the scale-eating cichlid Perissodus microlepis (Teleostei, Perciformes, Cichlidae) in southern Lake Tanganyika. Zool Scr 2009, 38(3):257-68.
- [67]Van Oosterhout C, William F, Hutchinson DP, Wills M, Shipley P: Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-8.
- [68]Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G: LOSITAN: A workbench to detect molecular adaptation based on a F(st)-outlier method. BMC Bioinformatics 2008, 9:5. BioMed Central Full Text
- [69]Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F: Genetix 4.02, Logiciel Sous Windows TM Pour la Génétique des Populations. Laboratoire Génome, Populations, Université de Montpellier II, Montpellier (France); 2004.
- [70]Rice WR: Analyzing tables of statistical tests. Evolution 1989, 43:223-5.
- [71]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-59.
- [72]Earl DA, Vonholdt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012, 4(2):359-61.
- [73]Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28(19):2537-9.
- [74]Beerli P, Felsenstein J: Maximum likelihood estimation of migration rates and population numbers of two populations using a coalescent approach. Genetics 1999, 152(2):763-73.
- [75]Felsenstein J: PHYLIP (Phylogeny Inference Package) Version 3.6a2. Department of Genetics, University of Washington, Seattle; 1993.
- [76]Rohlf FJ: TPSDIG2.17. A program for landmark development and analysis. 2001.
- [77]Klingenberg CP: MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 2011, 11(2):353-7.
- [78]Dryden I, Mardia K: Statistical Shape Analysis. Wiley, New York; 1998.
- [79]Zelditch M, Swiderski D, Sheets HD, Fink WL: Geometric Morphometrics for Biologists. Elsevier Academic Press, San Diego, California; 2004.