期刊论文详细信息
BMC Medical Imaging
Determination of regional lung air volume distribution at mid-tidal breathing from computed tomography: a retrospective study of normal variability and reproducibility
Ira Katz4  Spyridon Montesantos3  Georges Caillibotte3  Michael Bennett2  Caroline Majoral3  Joy Conway1  John Fleming5 
[1]Faculty of Health Sciences, University of Southampton, Southampton, UK
[2]National Institute of Health Research Biomedical Research Unit in Respiratory Disease, University Hospital Southampton NHS Foundation Trust, Southampton, UK
[3]Medical R&D, Air Liquide Santé International, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, France
[4]Department of Mechanical Engineering, Lafayette College, Easton, PA, USA
[5]Department of Nuclear Medicine, Southampton General Hospital, Mail Point 26, Southampton SO166YD, UK
关键词: Reproducibility;    Computed tomography;    Regional lung volume measurement;   
Others  :  1090226
DOI  :  10.1186/1471-2342-14-25
 received in 2014-03-12, accepted in 2014-07-08,  发布年份 2014
PDF
【 摘 要 】

Background

Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data.

Methods

Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions.

Results

The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001).

Conclusion

A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size.

【 授权许可】

   
2014 Fleming et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128155121386.pdf 1006KB PDF download
Figure 8. 75KB Image download
Figure 7. 35KB Image download
Figure 6. 98KB Image download
Figure 5. 36KB Image download
Figure 4. 25KB Image download
Figure 3. 51KB Image download
Figure 2. 36KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CPM, Gustafson P, Hankinson J, Hensen R, Johnson D, MacIntyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G: Standardisation of the measurement of lung volumes. Eur Respir J 2005, 25:511-522.
  • [2]Hoffman EA: Effect of body orientation on regional lung expansion: a computed tomographic approach. J Appl Physiol 1985, 59:468-480.
  • [3]Sauret V, Halson PH, Brown IW, Fleming JS, Bailey AG: Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images. J Anat 2002, 200:123-134.
  • [4]De Backer LA, Vos WG, Salgado R, De Backer JW, Devolder A, Verhulst SL, Claes R, Germonpré PR, De Backer WA: Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD. Int J Chron Obstruct Pulmon Dis 2011, 6:637-646.
  • [5]Kim WJ, Silverman EK, Hoffmann E, Criner GJ, Mosenifar Z, Sciurba FC, Make BJ, Carey V, Estepar RSJ, Diaz A, Reilly JJ, Martinez FJ, Washko GR, and the NETT Research Group: CT metrics of airway disease and emphysema in severe COPD. Chest 2009, 136:396-404.
  • [6]Zavaletta VA, Bartholmai BJ, Robb RA: High resolution multi-detector CT-aided tissue analysis and quantification in lung fibrosis. Acad Radiol 2007, 14:772-787.
  • [7]Galban CJ, Han MK, Boes JL, Chughtai KA, Mater CR, Johnson TD, Galban S, Rehemtulla A, Kazerooni EA, Martinez FJ, Ross BD: Computed tomography- based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012, 18(11):1711-1715.
  • [8]Ravikumar P, Yilmaz C, Danc DM, Johnson RI Jr, Estrera AS, Hsia CC: Developmental signals do not further accentuate nonuniform postpneumonectomy compensatory lung growth. J Appl Physiol 2007, 102:1170-1177.
  • [9]Yilmaz C, Watharkar SS, de LA D, Garcia CK, Patel NC, Jordam KG, Hsia CC: Quantification of regional interstitial lung disease from CT-derived fractional tissue volume – a lung tissue research consortium study. Acad Radiol 2011, 18:1014-1023.
  • [10]Grydeland TB, Dirksen A, Coxson HO, Eagan TML, Thorsen E, Pillai SG, Sharma S, Eide GE, Gulsvik A, Bakke PS: Quantitative computed tomography measures of emphysema and airway wall thickness are related to respiratory symptoms. Am J Respir Crit Care Med 2010, 181:353-359.
  • [11]Biddiscombe MF, Meah SN, Underwood SR, Usmani OS: Comparing lung regions of interest in gamma scintigraphy for assessing inhaled therapeutic aerosol deposition. J Aerosol Med 2011, 24:165-173.
  • [12]Fleming JS, Sauret V, Conway JH, Holgate ST, Bailey AG, Martonen TB: Evaluation of the accuracy and precision of lung aerosol deposition measurements from SPECT using simulation. J Aerosol Med 2000, 13:187-198.
  • [13]Reske AW, Rau A, Reske AP, Kozoi M, Gottwald B, Alel M, Ionita J-C, Spieth P, Hepp P, Seiwerts M, Beda A, Bormn S, Scheuermann G, Amato MBP, Wrigge H: Extrapolation in the analysis of lung aeration by computed tomography: a validation study. Crit Care 2011, 15:R279.
  • [14]Hsia CCW, Hyde DM, Weibel ER OM: An official research policy statement of the American Thoracic Society/ European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010, 181:394-418.
  • [15]Patroniti N, Bellani G, Manfio A, Maggioni E, Giuffrida A, Foti G, Pesenti A: Lung volume in mechanically ventilated patients: measurement by simplified helium dilution compared to quantitative CT scan. Intensive Care Med 2004, 30:282-289.
  • [16]Takeda S, Wu EY, Epstein RH, Estrera AS, Hsia CC: In-vivo assessment of changes in air and tissue volumes after pneumonectomy. J Appl Physiol 1997, 82:1340-1348.
  • [17]Brown MS, Kim HJ, Abtin F, Da Costa I, Pais R, Ahmad S, Angel E, Ni C, Kleerup EC, Gjertson DW, McNitt-Gray MF, Goldin JG: Reproducibility of lung and lobar volume measurements using computed tomography. Acad Radiol 2010, 17:316-322.
  • [18]Conway J, Fleming J, Majoral C, Katz I, Perchet D, Peebles C, Tossici-Bolt L, Collier L, Caillibotte G, Pichelin M, Sauret-Jackson V, Martonen T, Apiou-Sbirlea G, Muellinger B, Kroneberg P, Gleske J, Scheuch G, Texereau J, Martin A, Montesantos S, Bennett M: Controlled, parametric, individualized 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation. J Aerosol Sci 2012, 52:1-17.
  • [19]Fleming JS, Britten AJ, Perring S, Keen AC, Howlett PJ: A general software package for the handling of medical images. J Med Eng Technol 1991, 15:162-169.
  • [20]De Nunzio G, Tommasi E, Agrusti A, Cataldo R, De Mitri I, Favetta M, Maglio S, Massafra A, Quarta M, Torsello M, Zecca I, Belotti R, Tangaro S, Calvini P, Camarlinghi N, Falaschi F, Cerello P, Oliva P: Automatic lung segmentation in CT images with accurate handling of the hilar region. J Digit Imaging 2011, 24:11-27.
  • [21]Hu S, Hoffman EA, Reinhardt JM: Automatic lung segmentation for accurate quantitation of volumetric x-ray CT images. IEEE Trans Med Imaging 2001, 20:490-498.
  • [22]Fleming JS, Conway JH, Bennett MJ, Majoral C, Katz I, Caillibotte G: A technique for determination of lung outline and regional lung air volume distribution from computed tomography. J Aerosol Med Pulm Drug Deliv 2014, 27:35-42.
  • [23]Diem K, Lentner C (Eds): Documenta Geigy Scientific Tables. Seventh edition. Basle, Switzerland: Geigy Pharmaceuticals; 1970.
  • [24]Perring S, Summers Q, Fleming JS, Nassim MA, Holgate ST: A new method of quantification of the pulmonary regional distribution of aerosols using combined CT and SPECT and its application to nedocromil sodium administered by metered dose inhaler. Brit J Radiol 1994, 67:46-53.
  • [25]Gevenois PA, Scillia P, de Maertelaer V, Michils A, De Vuyst P, Yernault J-C: The effects of age, sex, lung size and hyperinflation on CT lung densitometry. Am J Roentgenol 1996, 167:1169-1173.
  • [26]Stocks J, Quanjer PH: Reference values for residual volume, functional residual capacity and total lung capacity. Eur Respir J 1995, 8:492-506.
  • [27]Ibanez J, Raurich JM: Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med 1982, 8:173-177.
  • [28]Porter MJ, Maw AR, Kerridge DH, Williamson IM: Manometric rhinometry: a new method of measuring the volume of air in the nasal cavity. Acta Otolaryngol 1997, 117:298-301.
  • [29]Burnell PKP, Asking L, Borgstrom L, Nichols SC, Olsson B, Prime D, Shrubb I: Studies of the human oropharyngeal airspaces using magnetic resonance imaging IV – the oropharyngeal retention effect for four inhalation delivery systems. J Aerosol Med 2007, 20:269-281.
  • [30]ICRP (International Commission for Radiological Protection) Publication 66: Human Respiratory Tract Model for Radiological Proection. Oxford UK: Pergamon Press; 1994.
  • [31]Graf J, Santos A, Dries D, Adams AB, Marini JJ: Agreement between functional residual capacity estimated via automated gas dilution versus via computed tomography in a pleural effusion model. Respir Care 2010, 55:1464-1468.
  • [32]Boedeker KL, McNitt-Gray MF, Rogers SR, Truong BS, Brown MS, Gjesrtson DW, Goldin JG: Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology 2004, 232:295-301.
  • [33]Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ: Statistical parametric maps in functional imaging: a general linear approach. Hum Brian Mapp 1995, 2:189-210.
  • [34]Fleming JS, Conway JH, Majoral C, Tossici-Bolt L, Katz I, Caillibotte G, Perchet D, Pichelin M, Muellinger B, Martonen TB, Kroneberg P, Apiou-Sbirlea G: The use of combined single photon emission computed tomography and x-ray computed tomography to assess the fate of inhaled aerosol. J Aerosol Med 2011, 24:49-60.
  • [35]Montesantos S, Fleming JS, Tossici-Bolt L: A spatial model of the human airway tree: the hybrid conceptual model. J Aerosol Med 2010, 23:59-68.
  • [36]McClelland JR, Blackall JM, Tarte S, Chandler AC, Hughes S, Ahamd S, Landau DB, Hawkes DJ: A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Med Phys 2006, 33:3348-3358.
  • [37]Liu Z, Araki T, Okajima Y, Albert M, Hatabu H: Pulmonary hyperpolarized nobel gas MRI: recent advances and perspectives in clinical application. Eur J Radiol 2014, 83:1282-1291.
  文献评价指标  
  下载次数:0次 浏览次数:15次