BMC Structural Biology | |
Crystal structure of a new benzoic acid inhibitor of influenza neuraminidase bound with a new tilt induced by overpacking subsite C6 | |
Blaine HM Mooers1  Wayne J Brouillette2  Gillian M Air1  Gundurao Kolavi2  Eric S Johnson2  Lalitha Venkatramani1  | |
[1] Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA;Department of Chemistry and Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 901 14th Street South, Birmingham, AL, 35294, USA | |
关键词: Pyrrolidinone; Benzoic acid; Influenza virus; Glycan structure; Glycoprotein; Structure-based drug design; Antiviral; Enzyme-ligand complex; Influenza neuraminidase inhibitor; | |
Others : 1092347 DOI : 10.1186/1472-6807-12-7 |
|
received in 2012-02-24, accepted in 2012-04-13, 发布年份 2012 | |
【 摘 要 】
Background
Influenza neuraminidase (NA) is an important target for antiviral inhibitors since its active site is highly conserved such that inhibitors can be cross-reactive against multiple types and subtypes of influenza. Here, we discuss the crystal structure of neuraminidase subtype N9 complexed with a new benzoic acid based inhibitor (2) that was designed to add contacts by overpacking one side of the active site pocket. Inhibitor 2 uses benzoic acid to mimic the pyranose ring, a bis-(hydroxymethyl)-substituted 2-pyrrolidinone ring in place of the N-acetyl group of the sialic acid, and a branched aliphatic structure to fill the sialic acid C6 subsite.
Results
Inhibitor 2 {4-[2,2-bis(hydroxymethyl)-5-oxo-pyrrolidin-1-yl]-3-[(dipropylamino)methyl)]benzoic acid} was soaked into crystals of neuraminidase of A/tern/Australia/G70c/75 (N9), and the structure refined with 1.55 Å X-ray data. The benzene ring of the inhibitor tilted 8.9° compared to the previous compound (1), and the number of contacts, including hydrogen bonds, increased. However, the IC50 for compound 2 remained in the low micromolar range, likely because one propyl group was disordered. In this high-resolution structure of NA isolated from virus grown in chicken eggs, we found electron density for additional sugar units on the N-linked glycans compared to previous neuraminidase structures. In particular, seven mannoses and two N-acetylglucosamines are visible in the glycan attached to Asn200. This long, branched high-mannose glycan makes significant contacts with the neighboring subunit.
Conclusions
We designed inhibitor 2 with an extended substituent at C4-corresponding to C6 of sialic acid-to increase the contact surface in the C6-subsite and to force the benzene ring to tilt to maximize these interactions while retaining the interactions of the carboxylate and the pyrolidinone substituents. The crystal structure at 1.55 Å showed that we partially succeeded in that the ring in 2 is tilted relative to 1 and the number of contacts increased, but one hydrophobic branch makes no contacts, perhaps explaining why the IC50 did not decrease. Future design efforts will include branches of unequal length so that both branches may be accommodated in the C6-subsite without conformational disorder. The high-mannose glycan attached to Asn200 makes several inter-subunit contacts and appears to stabilize the tetramer.
【 授权许可】
2012 Venkatramani et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128182846422.pdf | 1496KB | download | |
Figure 5. | 85KB | Image | download |
Figure 4. | 26KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 2. | 60KB | Image | download |
Figure 1. | 55KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Palese P, Tobita K, Ueda M, Compans RW: Characterization of temperature-sensitive influenza virus mutants defective in neuraminidase. Virology 1974, 61:397-410.
- [2]Liu C, Eichelberger MC, Compans RW, Air GM: Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol 1995, 69(2):1099-1106.
- [3]Webster RG, Govorkova EA: H5N1 influenza–continuing evolution and spread. New Engl J Med 2006, 355(21):2174-2177.
- [4]Rota P: Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 1990, 175(1):59-68.
- [5]Air GM, Brouillette WJ: Influenza virus antiviral targets. In Antiviral Res. Edited by LaFemina R. ASM Press, Washington, DC; 2009:187-207.
- [6]Colman PM, Varghese JN, Laver WG: Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983, 303:41-44.
- [7]Burmeister WP, Ruigrok RW, Cusack S: The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J 1992, 11(1):49-56.
- [8]Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM: Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J Mol Biol 1993, 232(4):1069-1083.
- [9]Air GM: Influenza neuraminidase. Influenza Other Respir Viruses 2011. Nov 16,
- [10]von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, et al.: Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363(6428):418-423.
- [11]Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, et al.: Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 1997, 119(4):681-690.
- [12]Brouillette WJ, Atigadda VR, Luo M, Air GM, Babu YS, Bantia S: Design of benzoic acid inhibitors of influenza neuraminidase containing a cyclic substitution for the N-acetyl grouping. Bioorg Med Chem Lett 1999, 9(14):1901-1906.
- [13]Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC: Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem 1998, 41(14):2451-2460.
- [14]Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, Lin TH, Hutchison TL, Elliott AJ, Parker CD, et al.: BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem 2000, 43(19):3482-3486.
- [15]Jedrzejas MJ, Singh S, Brouillette WJ, Air GM, Luo M: A strategy for theoretical binding constant, Ki, calculations for neuraminidase aromatic inhibitors designed on the basis of the active site structure of influenza virus neuraminidase. Proteins 1995, 23(2):264-277.
- [16]Singh S, Jedrzejas MJ, Air GM, Luo M, Laver WG, Brouillette WJ: Structure-based inhibitors of influenza virus sialidase. A benzoic acid lead with novel interaction. J Med Chem 1995, 38(17):3217-3225.
- [17]Brouillette WJ, Bajpai SN, Ali SM, Velu SE, Atigadda VR, Lommer BS, Finley JB, Luo M, Air GM: Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: modifications of essential pyrrolidinone ring substituents. Bioorg Med Chem 2003, 11(13):2739-2749.
- [18]Atigadda VR, Brouillette WJ, Duarte F, Ali SM, Babu YS, Bantia S, Chand P, Chu N, Montgomery JA, Walsh DA, et al.: Potent inhibition of influenza sialidase by a benzoic acid containing a 2-pyrrolidinone substituent. J Med Chem 1999, 42(13):2332-2343.
- [19]Smith PW, Robinson JE, Evans DN, Sollis SL, Howes PD, Trivedi N, Bethell RC: Sialidase inhibitors related to zanamivir: synthesis and biological evaluation of 4 H-pyran 6-ether and ketone. Bioorg Med Chem Lett 1999, 9(4):601-604.
- [20]Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ: The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006, 443(7107):45-49.
- [21]Finley JB, Atigadda VR, Duarte F, Zhao JJ, Brouillette WJ, Air GM, Luo M: Novel aromatic inhibitors of influenza virus neuraminidase make selective interactions with conserved residues and water molecules in the active site. J Mol Biol 1999, 293(5):1107-1119.
- [22]Rarey M, Kramer B, Lengauer T, Klebe G: A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996, 261(3):470-489.
- [23]Kolavi G, Li Y, Johnson ES, Gulati S, Air GM, Brouillette WJin preparation
- [24]Varghese JN, Smith PW, Sollis SL, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL, Colman PM: Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 1998, 6(6):735-746.
- [25]Laver WG, Colman PM, Webster RG, Hinshaw VS, Air GM: Influenza virus neuraminidase with hemagglutinin activity. Virology 1984, 137:314-323.
- [26]Varghese JN, Colman PM, van Donkelaar A, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL: Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci USA 1997, 94(22):11808-11812.
- [27]Weiss MS: Global indicators of X-ray data quality. J Appl Cryst 2001, 34:130-135.
- [28]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
- [29]McDonald I, Thornton J: Satisfying hydrogen bonding potential in proteins. J Mol Biol 1994, 238:777-793.
- [30]Copeland RA: Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. 2nd edition. Wiley-VCH, New York; 2000.
- [31]Baker EN, Hubbard RE: Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 1984, 44(2):97-179.
- [32]Lommer BS, Ali SM, Bajpai SN, Brouillette WJ, Air GM, Luo M: A benzoic acid inhibitor induces a novel conformational change in the active site of Influenza B virus neuraminidase. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 6):1017-1023.
- [33]Wang T, Wade RC: Comparative binding energy (COMBINE) analysis of influenza neuraminidase-inhibitor complexes. J Med Chem 2001, 44(6):961-971.
- [34]Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN: REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2184-2195.
- [35]Varghese JN, McKimm-Breschkin JL, Caldwell JB, Kortt AA, Colman PM: The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 1992, 14(3):327-332.
- [36]Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2256-2268.
- [37]Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 4):486-501.
- [38]Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ: Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 2008, 453(7199):1258-1261.
- [39]Jedrzejas MJ, Singh S, Brouillette WJ, Laver WG, Air GM, Luo M: Structures of aromatic inhibitors of influenza virus neuraminidase. Biochemistry 1995, 34:3144-3151.
- [40]Holm L, Park J: DaliLite workbench for protein structure comparison. Bioinformatics 2000, 16(6):566-567.
- [41]Venkatramani L, Bochkareva E, Lee JT, Gulati U, Graeme Laver W, Bochkarev A, Air GM: An epidemiologically significant epitope of a 1998 human influenza virus neuraminidase forms a highly hydrated interface in the NA-antibody complex. J Mol Biol 2006, 356(3):651-663. and cover picture
- [42]Lee JT, Air GM: Contacts between influenza N9 neuraminidase and monoclonal antibody NC10. Virology 2002, 300:255-268.
- [43]Ward CW, Murray JM, Roxburgh CM, Jackson DC: Chemical and antigenic characterization of the carbohydrate side chains of an Asian (N2) influenza virus neuraminidase. Virology 1983, 126(1):370-375.
- [44]Wu Z, Ethen C, Hickey G, Jiang W: Active 1918 pandemic flu viral neuraminidase has distinct N-glycan profile and is resistant to trypsin digestion. Biochem Biophys Res Commun 2009, 379:749-753.
- [45]Ceroni A, Dell A, Haslam S: The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures. Source Code Biol Med 2007, 2:3. BioMed Central Full Text
- [46]Garman E: Cool data: quantity AND quality. Acta Crystallogr D Biol Crystallogr 1999, 55(Pt 10):1641-1653.
- [47]Weast RC (Ed): Handbook of Chemistry and Physics 69th edition. CRC PRess, Boca Raton, FL; 1988.
- [48]Kabsch W: XDS. Acta Crystallogr D Biol Crystallogr 2010, 66(2):125-132.
- [49]Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al.: Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011, 67(Pt 4):235-242.
- [50]Evans P: Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 2006, 62(Pt 1):72-82.
- [51]French S, Wilson K: On the treatment of negative intensity observations. Acta Crystallogr A 1978, 34:517-525.
- [52]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53(Pt 3):240-255.
- [53]Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 2):213-221.
- [54]Schuttelkopf AW, van Aalten DM: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 8):1355-1363.
- [55]Word JM, Lovell SC, Richardson JS, Richardson DC: Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 1999, 285(4):1735-1747.
- [56]Laskowski RA, Swindells MB: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011, 51(10):2778-2786.