期刊论文详细信息
BMC Proceedings
miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data
Jinwook Seo1  Eric Hoffman2  Mamta Giri3  Robert J Freishtat2  Bohyoung Kim4  Daekyoung Jung1 
[1] Department of Computer Science and Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, South Korea;Department of Integrative Systems Biology, George Washington University, 111 Michigan Avenue, NW, Washington, D.C., 20010-2970, USA;Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., USA;Department of Radiology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
关键词: Target prediction;    Expression profile;    Visualization;    mRNA;    MicroRNA;   
Others  :  1222586
DOI  :  10.1186/1753-6561-9-S6-S2
PDF
【 摘 要 】

Background

MicroRNAs (miRNA) are short nucleotides that down-regulate its target genes. Various miRNA target prediction algorithms have used sequence complementarity between miRNA and its targets. Recently, other algorithms tried to improve sequence-based miRNA target prediction by exploiting miRNA-mRNA expression profile data. Some web-based tools are also introduced to help researchers predict targets of miRNAs from miRNA-mRNA expression profile data. A demand for a miRNA-mRNA visual analysis tool that features novel miRNA prediction algorithms and more interactive visualization techniques exists.

Results

We designed and implemented miRTarVis, which is an interactive visual analysis tool that predicts targets of miRNAs from miRNA-mRNA expression profile data and visualizes the resulting miRNA-target interaction network. miRTarVis has intuitive interface design in accordance with the analysis procedure of load, filter, predict, and visualize. It predicts targets of miRNA by adopting Bayesian inference and MINE analyses, as well as conventional correlation and mutual information analyses. It visualizes a resulting miRNA-mRNA network in an interactive Treemap, as well as a conventional node-link diagram. miRTarVis is available at http://hcil.snu.ac.kr/~rati/miRTarVis/index.html webcite.

Conclusions

We reported findings from miRNA-mRNA expression profile data of asthma patients using miRTarVis in a case study. miRTarVis helps to predict and understand targets of miRNA from miRNA-mRNA expression profile data.

【 授权许可】

   
2015 Jung et al.

【 预 览 】
附件列表
Files Size Format View
20150824020522945.pdf 3821KB PDF download
Figure 12. 106KB Image download
Figure 11. 49KB Image download
Figure 10. 28KB Image download
Figure 9. 78KB Image download
Figure 8. 51KB Image download
Figure 7. 51KB Image download
Figure 6. 87KB Image download
Figure 5. 67KB Image download
Figure 4. 86KB Image download
Figure 3. 71KB Image download
Figure 2. 57KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [2]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [3]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biology 2004, 5(1):R1.
  • [4]Nam S, Li M, Choi K, Balch C, Kim S, Nephew NP: MicroRNA and mRNA integrated analysis (MMIA): A web tool for examining biological functions of microRNA expression. Nucleic Acids Research 2009, 37(Web Server issue):W356-W362.
  • [5]Huang GT, Athanassiou C, Benos PV: mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Research 2011, 39(Web Server issue):W416-W423.
  • [6]Biosognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C: MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Research 2012, 40(Web Server issue):W13-W21.
  • [7]Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, et al.: Using expression profiling data to identify human microRNA targets. Nature Methods 2007, 4(12):1045-1049.
  • [8]Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al.: Detecting novel association in large data sets. Science 2011, 334(6062):1518-1524.
  • [9]Betal D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Research 2008, 36(Database issue):D149-D153.
  • [10]Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2009, 11(8):R90.
  • [11]Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, et al.: DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research 2009, 37(Web Server issue):W273-W276.
  • [12]Wang X: miRDB: microRNA target prediction and functional annotation database with a wiki interface. RNA 2008, 14(6):1012-1017.
  • [13]Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, Anand S, et al.: MicroRNA target prediction by expression analysis of host genes. Genome Research 2009, 19(3):481-490.
  • [14]Zhang S, Li Q, Liu J, Zhou XJ: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 2011, 27(13):i404-i409.
  • [15]Meyer B: Self-organizing graphs--a neural network perspective of graph layout. Graph Drawing 1998, 246-262.
  • [16]Kamada T, Kawai S: An algorithm for drawing general undirected graphs. Information Processing Letters 1989, 31(1):7-15.
  • [17]Jung D, Seo J: miRTarVis: a standalone tool for visual analysis of microRNA and mRNA expression profile. KIISE 41th Winter Conference 2014, 984-986.
  • [18]Fruchterman TMJ, Reingold EM: Graph drawing by force-directed placement. Software: practice & experience 1991, 21(11):1129-1164.
  • [19]Kozomara A, Griffiths-Jones S: miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 2013, 42(Database issue):D68-D73.
  • [20]Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al.: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Research 2009, 37(Database issue):D98-D104.
  • [21]Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al.: GeneCards version 3: the human gene integrator. Database (Oxford) 2010, (2010):baq020.
  • [22]Kraskov A, Stögbauer H, Grassberger P: Estimating mutual information. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 69(6 Pt 2):066138.
  • [23]Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C: Minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics 2013, 29(3):407-408.
  • [24]Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, et al.: Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Research 2015, 77(3):447-454.
  文献评价指标  
  下载次数:75次 浏览次数:20次