期刊论文详细信息
BMC Genomics
Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin
Zeng-Fu Xu1  Jun Ni2  Mao-Sheng Chen1  Bang-Zhen Pan1 
[1] Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, Menglun 666303, People’s Republic of China;School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
关键词: Cell division;    Flower;    454 Sequencing;    Cytokinin;    Physic nut;    Biofuel;   
Others  :  1127598
DOI  :  10.1186/1471-2164-15-974
 received in 2014-06-21, accepted in 2014-10-29,  发布年份 2014
PDF
【 摘 要 】

Background

Jatropha curcas, whose seed content is approximately 30–40% oil, is an ideal feedstock for producing biodiesel and bio-jet fuels. However, Jatropha plants have a low number of female flowers, which results in low seed yield that cannot meet the needs of the biofuel industry. Thus, increasing the number of female flowers is critical for the improvement of Jatropha seed yield. Our previous findings showed that cytokinin treatment can increase the flower number and female to male ratio and also induce bisexual flowers in Jatropha. The mechanisms underlying the influence of cytokinin on Jatropha flower development and sex determination, however, have not been clarified.

Results

This study examined the transcriptional levels of genes involved in the response to cytokinin in Jatropha inflorescence meristems at different time points after cytokinin treatment by 454 sequencing, which gave rise to a total of 294.6 Mb of transcript sequences. Up-regulated and down-regulated annotated and novel genes were identified, and the expression levels of the genes of interest were confirmed by qRT-PCR. The identified transcripts include those encoding genes involved in the biosynthesis, metabolism, and signaling of cytokinin and other plant hormones, flower development and cell division, which may be related to phenotypic changes of Jatropha in response to cytokinin treatment. Our analysis indicated that Jatropha orthologs of the floral organ identity genes known as ABCE model genes, JcAP1,2, JcPI, JcAG, and JcSEP1,2,3, were all significantly repressed, with an exception of one B-function gene JcAP3 that was shown to be up-regulated by BA treatment, indicating different mechanisms to be involved in the floral organ development of unisexual flowers of Jatropha and bisexual flowers of Arabidopsis. Several cell division-related genes, including JcCycA3;2, JcCycD3;1, JcCycD3;2 and JcTSO1, were up-regulated, which may contribute to the increased flower number after cytokinin treatment.

Conclusions

This study presents the first report of global expression patterns of cytokinin-regulated transcripts in Jatropha inflorescence meristems. This report laid the foundation for further mechanistic studies on Jatropha and other non-model plants responding to cytokinin. Moreover, the identification of functional candidate genes will be useful for generating superior varieties of high-yielding transgenic Jatropha.

【 授权许可】

   
2014 Pan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150221015930105.pdf 2353KB PDF download
Figure 9. 121KB Image download
Figure 8. 51KB Image download
Figure 7. 76KB Image download
Figure 6. 70KB Image download
Figure 5. 49KB Image download
Figure 4. 126KB Image download
Figure 3. 56KB Image download
Figure 2. 93KB Image download
Fig.3. 16KB Image download
【 图 表 】

Fig.3.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Fairless D: Biofuel: the little shrub that could–maybe. Nature 2007, 449(7163):652-655.
  • [2]Li L, Coppola E, Rine J, Miller JL, Walker D: Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels 2010, 24(2):1305-1315.
  • [3]Bonnet S, Gheewala SH: Potential of Jatropha as an Energy Crop. In Jatropha, Challenges for a New Energy Crop. New York: Springer; 2012:571-582.
  • [4]Makkar H, Maes J, De Greyt W, Becker K: Removal and degradation of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. J Am Oil Chem Soc 2009, 86(2):173-181.
  • [5]Sanderson K: Wonder weed plans fail to flourish. Nature 2009, 461(7262):328-329.
  • [6]Divakara B, Upadhyaya H, Wani S, Gowda C: Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 2010, 87(3):732-742.
  • [7]Ghosh A, Chikara J, Chaudhary D, Prakash AR, Boricha G, Zala A: Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J Plant Growth Regul 2010, 29(3):307-315.
  • [8]Xu G, Luo R, Yao Y: Paclobutrazol improved the reproductive growth and the quality of seed oil of Jatropha curcas. J Plant Growth Regul 2013, 32(4):875-883.
  • [9]Abdelgadir H, Jäger A, Johnson S, Van Staden J: Influence of plant growth regulators on flowering, fruiting, seed oil content, and oil quality of Jatropha curcas. S Afr J Bot 2010, 76(3):440-446.
  • [10]Pan BZ, Xu ZF: Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 2011, 30(2):166-174.
  • [11]Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M: Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 2006, 142(1):54-62.
  • [12]Lindsay DL: Cytokinin-induced gene expression in Arabidopsis. In PhD Thesis. Saskatoon: University of Saskatchewan; 2006.
  • [13]Li X, Su Y, Zhao X, Li W, Gao X, Zhang X: Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 2010, 450(1–2):109-120.
  • [14]Hanano S, Domagalska MA, Nagy F, Davis SJ: Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 2006, 11(12):1381-1392.
  • [15]Riefler M, Novak O, Strnad M, Schmulling T: Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 2006, 18(1):40-54.
  • [16]Gonzalez-Rizzo S, Crespi M, Frugier F: The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 2006, 18(10):2680-2693.
  • [17]Chang ST, Chen WS, Hsu CY, Yu HC, Du BS, Huang KL: Changes in cytokinin activities before, during and after floral initiation in Polianthes tuberosa. Plant Physiol Biochem 1999, 37(9):679-684.
  • [18]Chen WS: Changes in cytokinins before and during early flower bud differentiation in lychee (Litchi chinensis Sonn.). Plant Physiol 1991, 96(4):1203-1206.
  • [19]D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C: Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 2011, 65(6):972-979.
  • [20]He YW, Loh CS: Induction of early bolting in Arabidopsis thaliana by triacontanol, cerium and lanthanum is correlated with increased endogenous concentration of isopentenyl adenosine (iPAdos). J Exp Bot 2002, 53(368):505-512.
  • [21]Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T: Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15(11):2532-2550.
  • [22]Venglat S, Sawhney VK: Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants. Planta 1996, 198(3):480-487.
  • [23]Ohkawa K: Effects of gibberellins and benzylandenine on dormancy and flowering of Lilium speciosum. Sci Hortic 1979, 10(3):255-260.
  • [24]Ravetta D, Palzkill D: The effect of growth regulators and apex removal on branching and flower bud production of jojoba. Ind Crops Prod 1992, 1(1):47-55.
  • [25]Prat L, Botti C, Fichet T: Effect of plant growth regulators on floral differentiation and seed production in Jojoba (Simmondsia chinensis (Link) Schneider). Ind Crops Prod 2008, 27(1):44-49.
  • [26]Negi SS, Olmo HP: Sex conversion in a male Vitis vinifera L. by a Kinin. Science 1966, 152(3729):1624-1625.
  • [27]Negi SS, Olmo HP: Certain embryological and biochemical aspects of cytokinin SD 8339 in converting sex of a male Vitis vinifera (Sylvestris). Am J Bot 1972, 59(8):851-857.
  • [28]Takahashi H, Suge H, Saito T: Sex expression as affected by N6-benzylaminopurine in staminate inflorescence of Luffa cylindrica. Plant Cell Physiol 1980, 21(4):525-536.
  • [29]Ghosh S, Basu P: Effect of some growth regulators on sex expression of Momordica charantia L. Sci Hortic 1982, 17(2):107-112.
  • [30]Wakushima S, Yoshioka H, Sakurai N: Lateral female strobili production in a Japanese red pine (Pinus densiflora Sieb. Et Zucc.) clone by exogenous cytokinin application. J For Res 1996, 1(3):143-148.
  • [31]Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z: Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 2010, 11(1):384.
  • [32]Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ, Penin AA: De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics 2011, 12(1):30.
  • [33]Edwards CE, Parchman TL, Weekley CW: Assembly, gene annotation and marker development using 454 floral transcriptome sequences in Ziziphus celata (Rhamnaceae), a highly endangered, Florida endemic plant. DNA Res 2012, 19(1):1-9.
  • [34]Shi X, Gupta S, Lindquist IE, Cameron CT, Mudge J, Rashotte AM: Transcriptome analysis of cytokinin response in tomato leaves. PLoS One 2013, 8(1):e55090.
  • [35]Gupta S, Shi X, Lindquist IE, Devitt N, Mudge J, Rashotte AM: Transcriptome profiling of cytokinin and auxin regulation in tomato root. J Exp Bot 2013, 64(2):695-704.
  • [36]Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena J: Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 2011, 18(1):65-76.
  • [37]Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T, Toyoda A, Fujiyama A, Tabata S, Fukui K, Sato S: Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 2012, 29(2):123-130.
  • [38]Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G: Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 2012, 7(5):e36522.
  • [39]King AJ, Li Y, Graham IA: Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. BioEnergy Res 2011, 4(3):211-221.
  • [40]Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FA, Silva MJD: Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 2010, 11(1):462.
  • [41]Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA, Singh KK, Madasamy P: Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 2010, 11(1):606.
  • [42]Chen MS, Wang GJ, Wang RL, Wang J, Song SQ, Xu ZF: Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 2011, 181(6):696-700.
  • [43]Gomes K, Almeida T, Gesteira A, Lôbo I, Guimarães A, Miranda AB, Sluys MAV, Cruz RS, Cascardo J, Carels N: ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights 2010, 3(1):29-56.
  • [44]Gu K, Chiam H, Tian D, Yin Z: Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 2011, 180(4):642-649.
  • [45]Xu R, Wang R, Liu A: Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenergy 2011, 35(5):1683-1692.
  • [46]Natarajan P, Parani M: De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 2011, 12(1):191.
  • [47]Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res 1999, 9(9):868-877.
  • [48]Rashotte AM, Carson SD, To JP, Kieber JJ: Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 2003, 132(4):1998-2011.
  • [49]Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang Y-H, Schaller GE, Loraine A, Kieber JJ: Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-seq in Arabidopsis. Plant Physiol 2013, 162(1):272-294.
  • [50]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [51]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [52]Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T: Immediate‒early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome‒wide expression profiling reveal novel cytokinin‒sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 2005, 44(2):314-333.
  • [53]Chory J, Reinecke D, Sim S, Washburn T, Brenner M: A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol 1994, 104(2):339-347.
  • [54]Chin-Atkins AN, Craig S, Hocart CH, Dennis ES, Chaudhury AM: Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses. Planta 1996, 198(4):549-556.
  • [55]Catterou M, Dubois F, Smets R, Vaniet S, Kichey T, Van Onckelen H, Sangwan‒Norreel BS, Sangwan RS: hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J 2002, 30(3):273-287.
  • [56]Hutchison CE, Kieber JJ: Cytokinin signaling in Arabidopsis. Plant Cell 2002, 14(Suppl 1):S47-S59.
  • [57]To JP, Kieber JJ: Cytokinin signaling: two-components and more. Trends Plant Sci 2008, 13(2):85-92.
  • [58]Hwang I, Sheen J: Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 2001, 413(6854):383-389.
  • [59]Lee DJ, Park J-Y, Ku S-J, Ha Y-M, Kim S, Kim MD, Oh M-H, Kim J: Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol Genet Genomics 2007, 277(2):115-137.
  • [60]Salomé PA, To JPC, Kieber JJ, McClung CR: Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 2006, 18(1):55-69.
  • [61]Sakakibara H, Takei K, Hirose N: Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 2006, 11(9):440-448.
  • [62]van Doorn WG, Celikel FG, Pak C, Harkema H: Delay of Iris flower senescence by cytokinins and jasmonates. Physiol Plant 2013, 148(1):105-120.
  • [63]Downs CG, Somerfield SD, Davey MC: Cytokinin treatment delays senescence but not sucrose loss in harvested broccoli. Postharvest Biol Tec 1997, 11(2):93-100.
  • [64]Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J: Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 2007, 445(7128):652-655.
  • [65]Kakimoto T: CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 1996, 274(5289):982-985.
  • [66]Kiba T, Taniguchi M, Imamura A, Ueguchi C, Mizuno T, Sugiyama T: Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabidopsis thaliana. Plant Cell Physiol 1999, 40(7):767-771.
  • [67]D'Agostino IB, Deruère J, Kieber JJ: Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 2000, 124(4):1706-1717.
  • [68]Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T: Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 2001, 409(6823):1060-1063.
  • [69]Sakakibara H, Taniguchi M, Sugiyama T: His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant Mol Biol 2000, 42(2):273-278.
  • [70]Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T: In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 2004, 101(23):8821-8826.
  • [71]Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Sugiyama T, Mizuno T: Compilation and characterization of Arabiopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol 1999, 40(7):733-742.
  • [72]Kiba T, Aoki K, Sakakibara H, Mizuno T: Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol 2004, 45(8):1063-1077.
  • [73]Cui X, Luan S: A new wave of hormone research: crosstalk mechanisms. Mol Plant 2012, 5(5):959-960.
  • [74]Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S: Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 2004, 134(4):1555-1573.
  • [75]Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E: High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 2006, 16(11):1123-1127.
  • [76]Dharmasiri N, Dharmasiri S, Estelle M: The F-box protein TIR1 is an auxin receptor. Nature 2005, 435(7041):441-445.
  • [77]Abel S, Theologis A: Early genes and auxin action. Plant Physiol 1996, 111(1):9-17.
  • [78]Guilfoyle TJ: Auxin-regulated genes and promoters. New Compr Biochem 1999, 33:423-459.
  • [79]Liscum E, Reed JW: Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 2002, 49(3–4):387-400.
  • [80]Ulmasov T, Hagen G, Guilfoyle TJ: Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A 1999, 96(10):5844-5849.
  • [81]Ulmasov T, Hagen G, Guilfoyle TJ: Dimerization and DNA binding of auxin response factors. Plant J 2002, 19(3):309-319.
  • [82]Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU: Hormonal control of the shoot stem-cell niche. Nature 2010, 465(7301):1089-1092.
  • [83]Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG: Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 2006, 18(12):3399-3414.
  • [84]Achard P, Genschik P: Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 2009, 60(4):1085-1092.
  • [85]Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M: KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 2005, 15(17):1560-1565.
  • [86]Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 2009, 324(5930):1068-1071.
  • [87]Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E: Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009, 324(5930):1064-1068.
  • [88]Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP: Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 2007, 19(10):3019-3036.
  • [89]Cowan AK, Cairns ALP, Bartels-Rahm B: Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot 1999, 50(334):595-603.
  • [90]Cowan A, Railton I: Cytokinins and ancymidol inhibit abscisic acid biosynthesis in Persea gratissima. J Plant Physiol 1987, 130(2):273-277.
  • [91]El-Showk S, Ruonala R, Helariutta Y: Crossing paths: cytokinin signalling and crosstalk. Development 2013, 140(7):1373-1383.
  • [92]Hua J, Meyerowitz EM: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 1998, 94(2):261-271.
  • [93]Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ: Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 2003, 33(2):221-233.
  • [94]Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P: EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 2003, 115(6):679-689.
  • [95]Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 1999, 284(5423):2148-2152.
  • [96]Cary AJ, Liu W, Howell SH: Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 1995, 107(4):1075-1082.
  • [97]Nam KH, Li J: BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 2002, 110(2):203-212.
  • [98]Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC: BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 2002, 110(2):213-222.
  • [99]Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY: BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 2008, 321(5888):557-560.
  • [100]He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY: BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 2005, 307(5715):1634-1638.
  • [101]Chini A, Fonseca S, Fernandez G, Adie B, Chico J, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano F, Ponce M, Micol JL, Solano R: The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007, 448(7154):666-671.
  • [102]Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 2007, 448(7154):661-665.
  • [103]Boatwright JL, Pajerowska‒Mukhtar K: Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol 2013, 14(6):623-634.
  • [104]Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G: CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 2006, 18(11):2971-2984.
  • [105]Sawa M, Kay SA: GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2011, 108(28):11698-11703.
  • [106]Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J: GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 1999, 18(17):4679-4688.
  • [107]Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL: The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 1999, 20(4):433-445.
  • [108]Azhakanandam S, Nole-Wilson S, Bao F, Franks RG: SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol 2008, 146(3):1165-1181.
  • [109]Krizek BA: AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 2009, 150(4):1916-1929.
  • [110]Baker SC, RobinsonBeers K, Villanueva JM, Gaiser JC, Gasser CS: Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 1997, 145(4):1109-1124.
  • [111]Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR: AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 1996, 8(2):155-168.
  • [112]Coen ES, Meyerowitz EM: The war of the whorls- genetic interactions controlling flower development. Nature 1991, 353(6339):31-37.
  • [113]Causier B, Schwarz-Sommer Z, Davies B: Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 2010, 21(1):73-79.
  • [114]Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ: Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc Natl Acad Sci U S A 2007, 104(3):1081-1086.
  • [115]Han YY, Zhang C, Yang HB, Jiao YL: Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci U S A 2014, 111(18):6840-6845.
  • [116]Yu M, Li X, Zhang X: Expression of AtIPT4 gene under the control of APETALA1 promoter results in abnormal flower and floral organ development. Chin Bull Bot 2009, 44(1):59-68.
  • [117]Skoog F, Miller C: Chemical regularion of growth and organ formation in plant fissue cultured. Symp Soc Exp Biol 1957, 11:118-131.
  • [118]Bartrina I, Otto E, Strnad M, Werner T, Schmülling T: Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 2011, 23(1):69-80.
  • [119]Motoyuki A, Hitoshi S, Lin S: Cytokinin oxidase regulates rice grain production. Science 2005, 309(5735):741-745.
  • [120]Werner T, Motyka V, Strnad M, Schmülling T: Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 2001, 98(18):10487-10492.
  • [121]Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH: Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 1999, 283(5407):1541-1544.
  • [122]Hu Y, Bao F, Li J: Promotive effect of brassinosteroids on cell division involves a distinct CycD3‒induction pathway in Arabidopsis. Plant J 2008, 24(5):693-701.
  • [123]Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH: Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci U S A 2007, 104(36):14537-14542.
  • [124]Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, Aoyama T: The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell 2006, 18(2):382-396.
  • [125]Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, Dhondt S, De Winter F, De Rybel B, Vuylsteke M, Veylder LD, Friml J, Inzé D, Grotewold E, Scarpella E, Sack F, Beemster GTS, Beeckman T: Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J 2011, 30(16):3430-3441.
  • [126]Sutou S, Miwa K, Matsuura T, Kawasaki Y, Ohinata Y, Mitsui Y: Native tesmin is a 60-kilodalton protein that undergoes dynamic changes in its localization during spermatogenesis in mice. Biol Reprod 2003, 68(5):1861-1869.
  • [127]Andersen SU, Algreen-Petersen RG, Hoedl M, Jurkiewicz A, Cvitanich C, Braunschweig U, Schauser L, Oh S-A, Twell D, Jensen EØ: The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J Exp Bot 2007, 58(13):3657-3670.
  • [128]Sijacic P, Wang W, Liu Z: Recessive antimorphic alleles overcome functionally redundant loci to reveal TSO1 function in Arabidopsis flowers and meristems. PLoS Genet 2011, 7(11):e1002352.
  • [129]Hauser BA, Villanueva JM, Gasser CS: Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics 1998, 150(1):411-423.
  • [130]Song JY, Leung T, Ehler LK, Wang C, Liu Z: Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development 2000, 127(10):2207-2217.
  • [131]Hauser BA, He JQ, Park SO, Gasser CS: TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 2000, 127(10):2219-2226.
  • [132]Santner A, Calderon-Villalobos LI, Estelle M: Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 2009, 5(5):301-307.
  • [133]Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D: Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 2005, 17(1):92-102.
  • [134]Weiss D, Ori N: Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 2007, 144(3):1240-1246.
  • [135]Moubayidin L, Di Mambro R, Sabatini S: Cytokinin–auxin crosstalk. Trends Plant Sci 2009, 14(10):557-562.
  • [136]Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J: Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 2013, 110(8):3167-3172.
  • [137]Rodriguez MCS, Edsgärd D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J: Transcriptomes of the desiccation‒tolerant resurrection plant Craterostigma plantagineum. Plant J 2010, 63(2):212-228.
  • [138]Feng J, Meyer CA, Wang Q, Liu JS, Liu XS, Zhang Y: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 2012, 28(21):2782-2788.
  • [139]Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA: A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics 2011, 12(1):619.
  • [140]Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan YJ: Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2005, 2(2):105-111.
  • [141]Zhang F, Guo H, Zheng H, Zhou T, Zhou Y, Wang S, Fang R, Qian W, Chen X: Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genomics 2010, 11(1):303.
  • [142]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000, 16(6):276-277.
  • [143]Chen Z, Xue C, Zhu S, Zhou F, Ling XB, Liu G, Chen L: GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog Biochem Biophys 2005, 32(2):187-190.
  • [144]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38(Database issue):D355-D360.
  • [145]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [146]Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26(1):136-138.
  • [147]Heyl A, Brault M, Frugier F, Kuderova A, Lindner A-C, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE: Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol 2013, 161(3):1063-1065.
  • [148]Cheadle C, Vawter MP, Freed WJ, Becker KG: Analysis of microarray data using Z score transformation. J Mol Diagn 2003, 5(2):73-81.
  • [149]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25(4):402-408.
  文献评价指标  
  下载次数:34次 浏览次数:24次