期刊论文详细信息
BMC Genomics
A deep transcriptomic analysis of pod development in the vanilla orchid (Vanilla planifolia)
Fang Chen2  Richard A Dixon2  Faith C Belanger1  Daphna Havkin-Frenkel1  Thomas Widiez1  Yuhong Tang3  Nick Krom3  Xiaolan Rao2 
[1] Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA;Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73402, USA
关键词: Vanillin;    Lignin;    RNA sequencing;    Transcriptome;    Vanilla planifolia;    Vanilla;   
Others  :  1127618
DOI  :  10.1186/1471-2164-15-964
 received in 2014-04-28, accepted in 2014-10-28,  发布年份 2014
PDF
【 摘 要 】

Background

Pods of the vanilla orchid (Vanilla planifolia) accumulate large amounts of the flavor compound vanillin (3-methoxy, 4-hydroxy-benzaldehyde) as a glucoside during the later stages of their development. At earlier stages, the developing seeds within the pod synthesize a novel lignin polymer, catechyl (C) lignin, in their coats. Genomic resources for determining the biosynthetic routes to these compounds and other flavor components in V. planifolia are currently limited.

Results

Using next-generation sequencing technologies, we have generated very large gene sequence datasets from vanilla pods at different times of development, and representing different tissue types, including the seeds, hairs, placental and mesocarp tissues. This developmental series was chosen as being the most informative for interrogation of pathways of vanillin and C-lignin biosynthesis in the pod and seed, respectively. The combined 454/Illumina RNA-seq platforms provide both deep sequence coverage and high quality de novo transcriptome assembly for this non-model crop species.

Conclusions

The annotated sequence data provide a foundation for understanding multiple aspects of the biochemistry and development of the vanilla bean, as exemplified by the identification of candidate genes involved in lignin biosynthesis. Our transcriptome data indicate that C-lignin formation in the seed coat involves coordinate expression of monolignol biosynthetic genes with the exception of those encoding the caffeoyl coenzyme A 3-O-methyltransferase for conversion of caffeoyl to feruloyl moieties. This database provides a general resource for further studies on this important flavor species.

【 授权许可】

   
2014 Rao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150221021036592.pdf 2843KB PDF download
Figure 8. 211KB Image download
Figure 7. 52KB Image download
Figure 6. 230KB Image download
Figure 5. 76KB Image download
Figure 4. 10KB Image download
Figure 3. 68KB Image download
Figure 2. 78KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Correll D: Vanilla-its botany, history, cultivation and economic import. Econ Bot 1953, 7(4):291-358.
  • [2]Ramachandra Rao S, Ravishankar GA: Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 2000, 80(3):289-304.
  • [3]Simmonds NW: Review of J. W. Purseglove, E. G. Brown, C. L. Green, and S. R. J. Robbins ‘Spices’. Exp Agric 1982, 18:330.
  • [4]Dixon RA: Vanillin Biosynthesis- not as Simple as it Seems?. In Handbook of Vanilla Science and Technology. 1st edition. Edited by Havkin-Frenkel D, Belanger FC. Chichester: Blackwell Publishing Ltd; 2011:292-298.
  • [5]Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J: A polymer of caffeyl alcohol in plant seeds. Proc Natl Acad Sci U S A 2012, 109:1772-1777.
  • [6]Bory S, Catrice O, Brown S, Leitch IJ, Gigant R, Chiroleu F, Grisoni M, Duval MF, Besse P: Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 2008, 51(10):816-826.
  • [7]Metzker ML: Applications of next-generation sequencing technologies - the next generation. Nat Rev Gene 2010, 11(1):31-46.
  • [8]Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, dePamphilis CW: Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 2009, 10:347. BioMed Central Full Text
  • [9]Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC: De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 2011, 52(9):1501-1514.
  • [10]Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M: Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012, 2012:251364.
  • [11]Garber M, Grabherr MG, Guttman M, Trapnell C: Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 2011, 8(6):469-477.
  • [12]Joel DM, French JC, Graft N, Kourteva G, Dixon RA, Havkin-Frenkel D: A hairy tissue produces vanillin. Israel J Plant Sci 2003, 51:157-159.
  • [13]Odoux E, Brillouet J-M: Anatomy, histochemistry and biochemistry ofr glucovanillin, oleoresin and mucilage accumualtion sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): a comprehensive and critical reexamination. Fruits 2009, 64:1-21.
  • [14]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [15]Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012, 28(8):1086-1092.
  • [16]Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 2004, 14(6):1147-1159.
  • [17]Chevreux B, Wetter T, Suhai S: Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol.: Proc. German Conference on Bioinformatics GCB'99 1999, 45-56.
  • [18]Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. Genomics 2010, 95(6):315-327.
  • [19]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [20]Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC, He J, Shen H, Srivastava AC, Pennacchio C, Lindquist E, Grimwood J, Schmutz J, Xu Y, Sharma M, Sharma R, Bartley LE, Ronald PC, Saha MC, Dixon RA, Tang Y, Udvardi MK: Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 2013, 74(1):160-173.
  • [21]Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK: A gene expression atlas of the model legume Medicago truncatula. Plant J 2008, 55(3):504-513.
  • [22]Fock-Bastide I, Palama TL, Bory S, Lecolier A, Noirot M, Joet T: Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis. Plant Physiol Biochem 2014, 74:304-314.
  • [23]Ma C, Wang X, Ma MC: rsgcc: Gini Methodology-Based Correlation and Clustering Analysis of Microarray and RNA-Seq Gene Expression Data. R package version 1.0.6 edn 2013.
  • [24]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [25]Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [26]Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014, 42(Database issue):D199-D205.
  • [27]Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. Nat Genet 2005, 37(5):501-506.
  • [28]Li HM, Rotter D, Hartman TG, Pak FE, Havkin-Frenkel D, Belanger FC: Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Plant Mol Biol 2006, 61(3):537-552.
  • [29]Pak FE, Gropper S, Dai WD, Havkin-Frenkel D, Belanger FC: Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia. Plant Cell Rep 2004, 22(12):959-966.
  • [30]Widiez T, Hartman TG, Dudai N, Yan Q, Lawton M, Havkin-Frenkel D, Belanger FC: Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases. Plant Mol Biol 2011, 76(6):475-488.
  • [31]Vanholme R, Cesarino I, Rataj K, Xiao YG, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W: Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 2013, 341(6150):1103-1106.
  • [32]Tobimatsu Y, Chen F, Nakashima J, Escamilla-Trevino LL, Jackson L, Dixon RA, Ralph J: Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 2013, 25(7):2587-2600.
  • [33]Havkin-Frenkel D, French JC, Graft NM, Pak F, Frenkel C, Joel D: Interrelation of curing and botany in vanilla (Vanilla planifolia) bean. Acta Hort 2004, 629:93-102.
  • [34]R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
  • [35]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [36]Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 2005, 139(1):5-17.
  • [37]Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339(1):62-66.
  • [38]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  文献评价指标  
  下载次数:115次 浏览次数:21次