期刊论文详细信息
BMC Research Notes
Proof of principle: quality control of therapeutic cell preparations using senescence-associated DNA-methylation changes
Wolfgang Wagner2  Peter de Waele1  Ralph Jans1  Carmen Mareike Koch2  Sébastien Mauen1  Anne Schellenberg2 
[1] Cardio3 Biosciences, Rue Edouard Belin 12, 1435 Mont-Saint-Guilbert, Belgium;Helmholtz-Institute for Biomedical Technology, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany
关键词: Quality control;    GMP;    DNA-methylation;    Epigenetic;    Senescence;    Expansion;    Long-term culture;    Mesenchymal stem cells;   
Others  :  1133265
DOI  :  10.1186/1756-0500-7-254
 received in 2013-09-23, accepted in 2014-04-11,  发布年份 2014
PDF
【 摘 要 】

Background

Tracking of replicative senescence is of fundamental relevance in cellular therapy. Cell preparations – such as mesenchymal stromal cells (MSCs) - undergo continuous changes during culture expansion, which is reflected by impaired proliferation and loss of differentiation potential. This process is associated with epigenetic modifications: during in vitro culture, cells acquire senescence-associated DNA methylation (SA-DNAm) changes at specific sites in the genome. We have recently described an Epigenetic-Senescence-Signature that facilitates prediction of the state of cellular aging by analysis of DNAm at six CpG sites (associated with the genes GRM7, CASR, PRAMEF2, SELP, CASP14 and KRTAP13-3), but this has not yet been proven over subsequent passages and with MSCs isolated under good manufacturing practice (GMP) conditions.

Findings

MSCs were isolated from human bone marrow and GMP-conform expanded for up to 11 passages. Cumulative population doublings (cPDs) and long-term growth curves were calculated based on cell numbers at each passage. Furthermore, 32 cryopreserved aliquots of these cell preparations were retrospectively analyzed using our Epigenetic-Senescence-Signature: DNAm-level was analyzed at six specific CpGs, and the results were used to estimate cPDs, time of culture expansion, and passage numbers. Overall, predicted and real parameters revealed a good correlation, particularly in cPDs. Based on predicted cPDs we could reconstruct long-term growth curves and demonstrated the continuous increase in replicative senescence on molecular level.

Conclusion

Epigenetic analysis of specific CpG sites in the genome can be used to estimate the state of cellular aging for quality control of therapeutic cell products.

【 授权许可】

   
2014 Schellenberg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150304134938662.pdf 436KB PDF download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R: Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 2000, 28:707-715.
  • [2]Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B: Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006, 7:14. BioMed Central Full Text
  • [3]Hayflick L, Moorhead P: The serial cultivation of human diploid cell strains. Exp Cell Res 1961, 25:585-621.
  • [4]Schellenberg A, Stiehl T, Horn P, Joussen S, Pallua N, Ho A, Wagner W: Population Dynamics of Mesenchymal Stromal Cells during Culture Expansion. Cytotherapy 2012, 14:401-411.
  • [5]Lepperdinger G: Inflammation and mesenchymal stem cell aging. Curr Opin Immunol 2011, 23:518-524.
  • [6]Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, Dulong J, Monnier D, Gourmelon P, Gorin NC, Sensebé L, Société Française de Greffe de Moelle et Thérapie Cellulaire: Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010, 115:1549-1553.
  • [7]Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M: Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 2008, 43:1018-1023.
  • [8]Wagner W, Bork S, Lepperdinger G, Joussen S, Ma N, Strunk D, Koch C: How to track cellular aging of mesenchymal stromal cells. Aging (Albany NY) 2010, 2:224-230.
  • [9]Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995, 92:9363-9367.
  • [10]Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD: Replicative Senescence of Mesenchymal Stem Cells - a Continuous and Organized Process. PLoS ONE 2008, 5:e2213.
  • [11]Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U: Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci 2013, 70:1637-1651.
  • [12]Tsai WC, Chang HN, Yu TY, Chien CH, Fu LF, Liang FC, Pang JH: Decreased proliferation of aging tenocytes is associated with down-regulation of cellular senescence-inhibited gene and up-regulation of p27. J Orthop Res 2011, 29:1598-1603.
  • [13]Frippiat C, Chen QM, Zdanov S, Magalhaes JP, Remacle J, Toussaint O: Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 2001, 276:2531-2537.
  • [14]Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB: Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 1992, 89:10114-10118.
  • [15]Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I: Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004, 22:675-682.
  • [16]Fehrer C, Voglauer R, Wieser M, Pfister G, Brunauer R, Cioca D, Grubeck-Loebenstein B, Lepperdinger G: Techniques in gerontology: cell lines as standards for telomere length and telomerase activity assessment. Exp Gerontol 2006, 41:648-651.
  • [17]Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W: DNA Methylation Pattern Changes upon Long-Term Culture and Aging of Human Mesenchymal Stromal Cells. Aging Cell 2010, 9:54-63.
  • [18]Redaelli S, Bentivegna A, Foudah D, Miloso M, Redondo J, Riva G, Baronchelli S, Dalpra L, Tredici G: From cytogenomic to epigenomic profiles: monitoring the biological behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Research and Therapy 2012, 3:47. BioMed Central Full Text
  • [19]Schellenberg A, Lin Q, Schueler H, Koch C, Joussen S, Denecke B, Walenda G, Pallua N, Suschek C, Zenke M, Wagner W: Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY) 2011, 3:873-888.
  • [20]Teschendorff AE, West J, Beck S: Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 2013, 22:7-15.
  • [21]Koch CM, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brummendorf T, Zenke M, Saric T, Wagner W: Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res 2013, 23:248-259.
  • [22]Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W: Monitoring of Cellular Senescence by DNA-Methylation at Specific CpG sites. Aging Cell 2012, 11:366-369.
  • [23]Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A: Cardiopoietic Stem Cell Therapy in Heart Failure: The C-CURE (Cardiopoietic stem Cell therapy in heart failURE) Multicenter Randomized Trial With Lineage-Specified Biologics. J Am Coll Cardiol 2013, 61:2329-2338.
  • [24]Koch CM, Wagner W: Epigenetic Biomarker to Determine Replicative Senescence of Cultured Cells. Meth Mol Biol 2013, 1048:309-321.
  • [25]Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W: Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 2010, 95:867-874.
  • [26]Campisi J: d’Adda di FF: Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 8:729-740.
  • [27]Fumagalli M: d’Adda di FF: SASPense and DDRama in cancer and ageing. Nat Cell Biol 2009, 11:921-923.
  • [28]Severino V, Alessio N, Farina A, Sandomenico A, Cipollaro M, Peluso G, Galderisi U, Chambery A: Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis 2013, 4:e911.
  文献评价指标  
  下载次数:35次 浏览次数:44次