期刊论文详细信息
BMC Medical Genetics
Structural variation and missense mutation in SBDS associated with Shwachman-Diamond syndrome
Alison A Bertuch1  James R Lupski1  Robert Paul Guillerman3  Wan Ip2  Richard A Gibbs7  Donna M Muzny7  Shalini N Jhangiani7  Matthew Bainbridge7  David R Murdock7  Nicholas J Neill6  Christopher L Williams4  Luciana W Zuccherato6  Claudia M B Carvalho5 
[1] Texas Children’s Hospital, 1102 Bates, FC 1200, Houston, TX 77030, USA;Program in Physiology and Experimental Medicine, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada;Department of Radiology, Baylor College of Medicine, Houston, TX, USA;Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA;Centro de Pesquisas René Rachou – FIOCRUZ, Belo Horizonte, MG, Brazil;Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA;Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
关键词: Recessive disease;    Copy number variation;    Whole exome sequencing;    Low copy repeat;    Non-allelic homologous recombination;    Genomic rearrangement;    Structural variation;    SBDS;    Shwachman-Diamond syndrome;   
Others  :  1091565
DOI  :  10.1186/1471-2350-15-64
 received in 2014-03-13, accepted in 2014-05-29,  发布年份 2014
【 摘 要 】

Background

Shwachman–Diamond syndrome (SDS) is an autosomal recessive ribosomopathy caused mainly by compound heterozygous mutations in SBDS. Structural variation (SV) involving the SBDS locus has been rarely reported in association with the disease. We aimed to determine whether an SV contributed to the pathogenesis of a case lacking biallelic SBDS point mutations.

Case presentation

Whole exome sequencing was performed in a patient with SDS lacking biallelic SBDS point mutations. Array comparative genomic hybridization and Southern blotting were used to seek SVs across the SBDS locus. Locus-specific polymerase chain reaction (PCR) encompassing flanking intronic sequence was also performed to investigate mutation within the locus. RNA expression and Western blotting were performed to analyze allele and protein expression. We found the child harbored a single missense mutation in SBDS (c.98A > C; p.K33T), inherited from the mother, and an SV in the SBDS locus, inherited from the father. The missense allele and SV segregated in accordance with Mendelian expectations for autosomal recessive SDS. Complementary DNA and western blotting analysis and locus specific PCR support the contention that the SV perturbed SBDS protein expression in the father and child.

Conclusion

Our findings implicate genomic rearrangements in the pathogenesis of some cases of SDS and support patients lacking biallelic SBDS point mutations be tested for SV within the SBDS locus.

【 授权许可】

   
2014 Carvalho et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
67KB Image download
Figure 5. 75KB Image download
Figure 4. 107KB Image download
Figure 3. 76KB Image download
Figure 2. 89KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Myers KC, Davies SM, Shimamura A: Clinical and molecular pathophysiology of Shwachman-Diamond syndrome: an update. Hematol Oncol Clin North Am 2013, 27(1):117-128. ix
  • [2]Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, Rommens JM: Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 2003, 33(1):97-101.
  • [3]Donadieu J, Fenneteau O, Beaupain B, Beaufils S, Bellanger F, Mahlaoui N, Lambilliotte A, Aladjidi N, Bertrand Y, Mialou V, Perot C, Michel G, Fouyssac F, Paillard C, Gandemer V, Boutard P, Schmitz J, Morali A, Leblanc T, Bellanne-Chantelot C, Associated investigators of the French Severe Chronic Neutropenia Registry: Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome. Haematologica 2012, 97(9):1312-1319.
  • [4]Kuijpers TW, Alders M, Tool AT, Mellink C, Roos D, Hennekam RC: Hematologic abnormalities in Shwachman Diamond syndrome: lack of genotype-phenotype relationship. Blood 2005, 106(1):356-361.
  • [5]Liu P, Carvalho CM, Hastings PJ, Lupski JR: Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 2012, 22(3):211-220.
  • [6]Lupski JR: Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998, 14(10):417-422.
  • [7]Stankiewicz P, Lupski JR: Genome architecture, rearrangements and genomic disorders. Trends Genet 2002, 18(2):74-82.
  • [8]Costa E, Duque F, Oliveira J, Garcia P, Goncalves I, Diogo L, Santos R: Identification of a novel AluSx-mediated deletion of exon 3 in the SBDS gene in a patient with Shwachman-Diamond syndrome. Blood Cells Mol Dis 2007, 39(1):96-101.
  • [9]Burwick N, Coats SA, Nakamura T, Shimamura A: Impaired ribosomal subunit association in Shwachman-Diamond syndrome. Blood 2012, 120(26):5143-5152.
  • [10]Menne TF, Goyenechea B, Sanchez-Puig N, Wong CC, Tonkin LM, Ancliff PJ, Brost RL, Costanzo M, Boone C, Warren AJ: The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet 2007, 39(4):486-495.
  • [11]Woloszynek JR, Rothbaum RJ, Rawls AS, Minx PJ, Wilson RK, Mason PJ, Bessler M, Link DC: Mutations of the SBDS gene are present in most patients with Shwachman-Diamond syndrome. Blood 2004, 104(12):3588-3590.
  • [12]Shammas C, Menne TF, Hilcenko C, Michell SR, Goyenechea B, Boocock GR, Durie PR, Rommens JM, Warren AJ: Structural and mutational analysis of the SBDS protein family. Insight into the leukemia-associated Shwachman-Diamond Syndrome. J Biol Chem 2005, 280(19):19221-19229.
  • [13]Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, Kang SH, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D, Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai AC, Bowers JA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T, Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B, Lalani SR, Probst FJ, Bi W, Beaudet AL, et al.: Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 2010, 31(12):1326-1342.
  • [14]Cheung SW, Shaw CA, Yu W, Li J, Ou Z, Patel A, Yatsenko SA, Cooper ML, Furman P, Stankiewicz P, Lupski JR, Chinault AC, Beaudet AL: Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 2005, 7(6):422-432.
  • [15]Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN, Lalani S, Hixson P, Gambin T, Tsai CH, Bock HG, Descartes M, Probst FJ, Scaglia F, Beaudet AL, Lupski JR, Eng C, Wai Cheung S, Bacino C, Patel A: Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 2014, 22(1):79-87.
  • [16]Shinawi M, Liu P, Kang SH, Shen J, Belmont JW, Scott DA, Probst FJ, Craigen WJ, Graham BH, Pursley A, Clark G, Lee J, Proud M, Stocco A, Rodriguez DL, Kozel BA, Sparagana S, Roeder ER, McGrew SG, Kurczynski TW, Allison LJ, Amato S, Savage S, Patel A, Stankiewicz P, Beaudet AL, Cheung SW, Lupski JR: Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet 2010, 47(5):332-341.
  • [17]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [18]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: Genome Project Data Processing S: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [19]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011, 43(5):491-498.
  • [20]Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, Milosavljevic A, Gibbs RA, Yu F: An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinforma 2012, 13:8. BioMed Central Full Text
  • [21]Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group: The variant call format and VCFtools. Bioinformatics 2011, 27(15):2156-2158.
  • [22]Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, Reid JG, Fink JK, Morgan MB, Gingras MC, Muzny DM, Hoang LD, Yousaf S, Lupski JR, Gibbs RA: Whole-genome sequencing for optimized patient management. Sci Transl Med 2011, 3(87):87re83.
  • [23]Lee JA, Inoue K, Cheung SW, Shaw CA, Stankiewicz P, Lupski JR: Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease. Hum Mol Genet 2006, 15(14):2250-2265.
  • [24]Shah SS, Bacino CA, Sheehan AM, Shearer WT: Diagnosis of primary immunodeficiency: let your eyes do the talking. J Allergy Clin Immunol 2009, 124(6):1363–-1364 e1361.
  • [25]Berrocal T, Simon MJ, Al-Assir I, Prieto C, Pastor I, de Pablo L, Lama R: Shwachman-Diamond syndrome: clinical, radiological and sonographic findings. Pediatr Radiol 1995, 25(5):356-359.
  • [26]Dror Y, Donadieu J, Koglmeier J, Dodge J, Toiviainen-Salo S, Makitie O, Kerr E, Zeidler C, Shimamura A, Shah N, Cipolli M, Kuijpers T, Durie P, Rommens J, Siderius L, Liu JM: Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann N Y Acad Sci 2011, 1242:40-55.
  • [27]Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP: Allelic variation in gene expression is common in the human genome. Genome Res 2003, 13(8):1855-1862.
  • [28]Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tuzun E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, et al.: Mapping and sequencing of structural variation from eight human genomes. Nature 2008, 453(7191):56-64.
  • [29]Bailey JA, Kidd JM, Eichler EE: Human copy number polymorphic genes. Cytogenet Genome Re 2008, 123(1–4):234-243.
  • [30]Dittwald P, Gambin T, Gonzaga-Jauregui C, Carvalho CM, Lupski JR, Stankiewicz P, Gambin A: Inverted low-copy repeats and genome instability–a genome-wide analysis. Hum Mutat 2013, 34(1):210-220.
  • [31]Koolen DA, Vissers LE, Pfundt R, de Leeuw N, Knight SJ, Regan R, Kooy RF, Reyniers E, Romano C, Fichera M, Schinzel A, Baumer A, Anderlid BM, Schoumans J, Knoers NV, van Kessel AG, Sistermans EA, Veltman JA, Brunner HG, de Vries BB: A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 2006, 38(9):999-1001.
  • [32]Lupski JR: Genome structural variation and sporadic disease traits. Nat Genet 2006, 38(9):974-976.
  • [33]Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S, Curley R, Cumming S, Dunn C, Kalaitzopoulos D, Porter K, Prigmore E, Krepischi-Santos AC, Varela MC, Koiffmann CP, Lees AJ, Rosenberg C, Firth HV, de Silva R, Carter NP: Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 2006, 38(9):1032-1037.
  • [34]Bondeson ML, Dahl N, Malmgren H, Kleijer WJ, Tonnesen T, Carlberg BM, Pettersson U: Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet 1995, 4(4):615-621.
  文献评价指标  
  下载次数:48次 浏览次数:28次