期刊论文详细信息
BMC Medical Genomics
Network analysis identifies a putative role for the PPAR and type 1 interferon pathways in glucocorticoid actions in asthmatics
Craig E Wheelock2  Åsa M Wheelock4  Prescott G Woodruff3  David J Erle3  John V Fahy3  Susumu Goto1  Diego Diez5 
[1]Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
[2]Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
[3]Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
[4]Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
[5]Laboratory of Bioinformatics and Genomics, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
关键词: Interferon pathway;    Toll-like receptor pathway;    PPAR pathway;    Network analysis;    Flovent;    Fluticasone propionate;    Glucocorticoids;    Inflammation;    Asthma;   
Others  :  1134835
DOI  :  10.1186/1755-8794-5-27
 received in 2012-02-10, accepted in 2012-06-19,  发布年份 2012
PDF
【 摘 要 】

Background

Asthma is a chronic inflammatory airway disease influenced by genetic and environmental factors that affects ~300 million people worldwide, leading to ~250,000 deaths annually. Glucocorticoids (GCs) are well-known therapeutics that are used extensively to suppress airway inflammation in asthmatics. The airway epithelium plays an important role in the initiation and modulation of the inflammatory response. While the role of GCs in disease management is well understood, few studies have examined the holistic effects on the airway epithelium.

Methods

Gene expression data were used to generate a co-transcriptional network, which was interrogated to identify modules of functionally related genes. In parallel, expression data were mapped to the human protein-protein interaction (PPI) network in order to identify modules with differentially expressed genes. A common pathways approach was applied to highlight genes and pathways functionally relevant and significantly altered following GC treatment.

Results

Co-transcriptional network analysis identified pathways involved in inflammatory processes in the epithelium of asthmatics, including the Toll-like receptor (TLR) and PPAR signaling pathways. Analysis of the PPI network identified RXRA, PPARGC1A, STAT1 and IRF9, among others genes, as differentially expressed. Common pathways analysis highlighted TLR and PPAR signaling pathways, providing a link between general inflammatory processes and the actions of GCs. Promoter analysis identified genes regulated by the glucocorticoid receptor (GCR) and PPAR pathways as well as highlighted the interferon pathway as a target of GCs.

Conclusions

Network analyses identified known genes and pathways associated with inflammatory processes in the airway epithelium of asthmatics. This workflow illustrated a hypothesis generating experimental design that integrated multiple analysis methods to produce a weight-of-evidence based approach upon which future focused studies can be designed. In this case, results suggested a mechanism whereby GCs repress TLR-mediated interferon production via upregulation of the PPAR signaling pathway. These results highlight the role of interferons in asthma and their potential as targets of future therapeutic efforts.

【 授权许可】

   
2012 Diez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306075843613.pdf 2111KB PDF download
Figure 6. 62KB Image download
Figure 5. 48KB Image download
Figure 4. 55KB Image download
Figure 3. 59KB Image download
Figure 2. 109KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Fanta CH: Asthma. N Eng J Med 2009, 360(10):1002-1014.
  • [2]Global Initiative for Asthma (GINA): Global strategy for asthma management and prevention. Global Initiative for Asthma (GINA), Bethesda (MD); 2010.
  • [3]Bulek K, Swaidani S, Aronica M, Li X: Epithelium: the interplay between innate and Th2 immunity. Immunol Cell Biol 2010, 88(3):257-268.
  • [4]Hammad H, Lambrecht BN: Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 2008, 8(3):193-204.
  • [5]Stellato C: Glucocorticoid actions on airway epithelial responses in immunity: functional outcomes and molecular targets. J Allergy Clin Immunol 2007, 120(6):1247-1263. quiz 1264–1245
  • [6]Barnes PJ: Inhaled glucocorticoids for asthma. N Eng J Med 1995, 332(13):868-875.
  • [7]Barnes PJ: Glucocorticosteroids: current and future directions. Br J Pharmacol 2010, 120(2-3):76-85.
  • [8]Barnes PJ, Adcock IM: Glucocorticoid resistance in inflammatory diseases. Lancet 2009, 373(9678):1905-1917.
  • [9]Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, et al.: Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA 2007, 104(40):15858-15863.
  • [10]Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 1995, 57:289-300.
  • [11]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006, 7(1):S7. BioMed Central Full Text
  • [12]Shi Z, Derow CK, Zhang B: Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Syst Biol 2010, 4:74. BioMed Central Full Text
  • [13]Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002, 18(Suppl 1):S233-S240.
  • [14]Beisser D, Klau GW, Dandekar T, Muller T, Dittrich MT: BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 2010, 26(8):1129-1130.
  • [15]Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34:D535-D539. Database issue
  • [16]Zambelli F, Pesole G, Pavesi G: Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 2009, 37:W247-W252. Web Server issue
  • [17]Darnell JE, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264(5164):1415-1421.
  • [18]Lawrence T, Natoli G: Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011, 11(11):750-761.
  • [19]Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I: Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 2011, 17(9):2619-2627.
  • [20]Zambelli F, Pavesi G: Cscan: Finding Common Regulators In A Set Of Genes Using Genome-Wide Chip-Seq Data. In Next Generation Sequencing Workshop. Bari, Italy; 2011. October 12–14 2011
  • [21]Diez D, Wheelock AM, Goto S, Haeggstrom JZ, Paulsson-Berne G, Hansson GK, Hedin U, Gabrielsen A, Wheelock CE: The use of network analyses for elucidating mechanisms in cardiovascular disease. Mol Biosyst 2010, 6(2):289-304.
  • [22]Ioannidis JP, Tarone R, McLaughlin JK: The false-positive to false-negative ratio in epidemiologic studies. Epidemiology 2011, 22(4):450-456.
  • [23]Barabasi AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12(1):56-68.
  • [24]Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL: The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA 2008, 105(29):9880-9885.
  • [25]Uematsu S, Akira S: Toll-like receptors and innate immunity. J Mol Med (Berl) 2006, 84(9):712-725.
  • [26]Lambrecht BN, Hammad H: The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 2010, 376(9743):835-843.
  • [27]Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN: TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 2007, 13(5):543-551.
  • [28]Bhattacharyya S, Zhao Y, Kay TW, Muglia LJ: Glucocorticoids target suppressor of cytokine signaling 1 (SOCS1) and type 1 interferons to regulate Toll-like receptor-induced STAT1 activation. Proc Natl Acad Sci USA 2011, 108(23):9554-9559.
  • [29]Hu X, Li WP, Meng C, Ivashkiv LB: Inhibition of IFN-gamma signaling by glucocorticoids. J Immunol 2003, 170(9):4833-4839.
  • [30]Kelly DP: The pleiotropic nature of the vascular PPAR gene regulatory pathway. Circ Res 2001, 89(11):935-937.
  • [31]Lee KS, Park SJ, Hwang PH, Yi HK, Song CH, Chai OH, Kim JS, Lee MK, Lee YC: PPAR-gamma modulates allergic inflammation through up-regulation of PTEN. FASEB J 2005, 19(8):1033-1035.
  • [32]Trifilieff A, Bench A, Hanley M, Bayley D, Campbell E, Whittaker P: PPAR-alpha and -gamma but not -delta agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-kappaB-independent effect. Br J Pharmacol 2003, 139(1):163-171.
  • [33]Wolf IM, Heitzer MD, Grubisha M, DeFranco DB: Coactivators and nuclear receptor transactivation. J Cell Biochem 2008, 104(5):1580-1586.
  • [34]Liu C, Lin JD: PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin 2011, 43(4):248-257.
  • [35]Lee JH, Joe EH, Jou I: PPAR-alpha activators suppress STAT1 inflammatory signaling in lipopolysaccharide-activated rat glia. Neuroreport 2005, 16(8):829-833.
  • [36]Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC, Gao C: Peroxisome proliferator-activated receptor gamma negatively regulates IFN-beta production in Toll-like receptor (TLR) 3- and TLR4-stimulated macrophages by preventing interferon regulatory factor 3 binding to the IFN-beta promoter. J Biol Chem 2011, 286(7):5519-5528.
  • [37]Marx N, Mach F, Sauty A, Leung JH, Sarafi MN, Ransohoff RM, Libby P, Plutzky J, Luster AD: Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 2000, 164(12):6503-6508.
  • [38]Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, Lafferty J, Chaudhuri R, Braganza G, Bareille P, et al.: Bronchodilatory effect of the PPAR-gamma agonist rosiglitazone in smokers with asthma. Clin Pharmacol Ther 2009, 86(1):49-53.
  • [39]Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, Hoffmann A, Subramaniam S, David M, Rosenfeld MG, et al.: Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 2005, 122(5):707-721.
  • [40]Stojadinovic O, Lee B, Vouthounis C, Vukelic S, Pastar I, Blumenberg M, Brem H, Tomic-Canic M: Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation. J Biol Chem 2007, 282(6):4021-4034.
  • [41]Tliba O, Cidlowski JA, Amrani Y: CD38 expression is insensitive to steroid action in cells treated with tumor necrosis factor-alpha and interferon-gamma by a mechanism involving the up-regulation of the glucocorticoid receptor beta isoform. Mol Pharmacol 2006, 69(2):588-596.
  • [42]Tliba O, Damera G, Banerjee A, Gu S, Baidouri H, Keslacy S, Amrani Y: Cytokines induce an early steroid resistance in airway smooth muscle cells: novel role of interferon regulatory factor-1. Am J Respir Cell Mol Biol 2008, 38(4):463-472.
  • [43]Bini EJ, Weinshel EH: Severe exacerbation of asthma: a new side effect of interferon-alpha in patients with asthma and chronic hepatitis C. Mayo Clin Proc 1999, 74(4):367-370.
  • [44]Gratzl S, Palca A, Schmitz M, Simon HU: Treatment with IFN-alpha in corticosteroid-unresponsive asthma. J Allergy Clin Immunol 2000, 105(5):1035-1036.
  • [45]Mouthon L, Guillevin L: Interferon-alpha in corticosteroid-resistant asthma and Churg-Strauss syndrome. Allergy 2003, 58(12):1244-1246.
  • [46]Simon HU, Seelbach H, Ehmann R, Schmitz M: Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy 2003, 58(12):1250-1255.
  • [47]Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV: T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009, 180(5):388-395.
  • [48]Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, Fedorowicz G, Modrusan Z, Fahy JV, Woodruff PG, et al.: Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. J Immunol 2011, 186(3):1861-1869.
  • [49]Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, et al.: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005, 33(20):e175.
  • [50]Gautier L, Cope L, Bolstad BM, Irizarry RA: affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20(3):307-315.
  • [51]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [52]Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF: The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992, 71(3):527-542.
  • [53]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005:397-420.
  • [54]Bonferroni CE: Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni 1935, 13-60.
  • [55]Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2. BioMed Central Full Text
  • [56]Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 2008, 24(13):i223-i231.
  • [57]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23(2):257-258.
  • [58]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22(13):1600-1607.
  • [59]Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ: INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 2009, 37:D852-D857. Database issue
  文献评价指标  
  下载次数:27次 浏览次数:16次