期刊论文详细信息
BMC Oral Health
Effect on enamel shear bond strength of adding microsilver and nanosilver particles to the primer of an orthodontic adhesive
Heike Maria Korbmacher-Steiner2  Matthias J Roggendorf1  Michael Schauseil2  Andreas Hellak2  Roland Frankenberger1  Sonja Blöcher2 
[1] Department of Operative Dentistry and Endodontology, University Hospital Giessen and Marburg, Campus Marburg, Georg-Voigt-Strasse 3, Marburg 35039, Germany;Department of Orthodontics, University Hospital Giessen and Marburg, Campus Marburg, Georg-Voigt-Strasse 3, Marburg 35039, Germany
关键词: Antimicrobial;    Nanosilver;    Microsilver;    Shear bond strength;   
Others  :  1142256
DOI  :  10.1186/s12903-015-0024-8
 received in 2014-08-15, accepted in 2015-03-03,  发布年份 2015
PDF
【 摘 要 】

Background

The objective of this study was to determine whether the addition of microsilver or nanosilver particles to an orthodontic primer affects shear bond strength (SBS) and bracket/adhesive failure.

Methods

Bovine incisors were randomly divided into six groups with 16 specimens in each: In group 1 (control), brackets were bonded with Transbond™ XT primer. In the experimental groups, microsilver (groups 2 and 3) and nanosilver (groups 4–6) particles of different sizes were added to Transbond XT primer and light cured for 15 seconds [group 2: 0.1% (w/w) microsilver particle size 3.5–18 μm; group 3: 0.3% (w/w) microsilver particle size 3.5–18 μm; group 4: 0.11% (w/w) nanosilver particle size 12.6–18.5 nm; group 5: 0.18% (w/w) nanosilver particle size 12.6–18.5 nm; group 6: 0.33% (w/w) nanosilver particle size 12.6–18.5 nm]. Thereafter, brackets were bonded by light curing the adhesive for 20 seconds. After 24 hours of storage in distilled water at 37°C, SBS was measured with a Zwicki 1120 testing machine. The adhesive remnant index and the prevalence of silver spots on the specimen surface were determined under 10× magnification. Statistical two-way analysis of variance was performed to compare SBS, and a chi-square test was used to compare ARI scores and the prevalence of silver spots.

Results

No significant differences in SBS (control: 16.59 ± 6.82 MPa; group 2: 20.6 ± 4.19 MPa; group 3: 16.98 ± 4.84 MPa; group 4: 17.15 ± 5.92 MPa; group 5: 20.09 ± 3.35 MPa; group 6: 16.44 ± 4.51 MPa; p > 0.665) and ARI scores (p = 0.901) were found between the control group and any experimental group. Only experimental groups with nanosilver particles revealed statistically more silver spots on the remaining adhesive.

Conclusions

Addition of small concentrations of microsilver or nanosilver particles affects neither SBS nor ARI scores. Addition of nanosilver particles results in silver spots in the remaining primer visible under 10× magnification. Further studies are needed to investigate the anti-caries potential and clinical performance of conventional orthodontic primer with incorporated nanosilver or microsilver particles.

【 授权许可】

   
2015 Blöcher et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150328020022572.pdf 1190KB PDF download
Figure 3. 109KB Image download
Figure 2. 25KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Gorelick L, Geiger AM, Gwinnett AJ: Incidence of white spot formation after bonding and banding. Am J Orthod 1982, 81(2):93-8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6758594
  • [2]Mizrahi E: Enamel demineralization following orthodontic treatment. Am J Orthod 1982, 82(1):62-7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6984291 . Accessed July 31, 2014
  • [3]Korbmacher HM, Huck L, Kahl-Nieke B: Fluoride-releasing adhesive and antimicrobial self-etching primer effects on shear bond strength of orthodontic brackets. Angle Orthod 2006, 76(5):845-50. doi:10.1043/0003-3219(2006)076[0845:FAAASP]2.0.CO;2
  • [4]Bergstrand F, Twetman S: A review on prevention and treatment of post-orthodontic white spot lesions - evidence-based methods and emerging technologies. Open Dent J. 2011, 5:158-62. doi:10.2174/1874210601105010158
  • [5]Chambers C, Stewart S, Su B, Sandy J, Ireland A: Prevention and treatment of demineralisation during fixed appliance therapy: a review of current methods and future applications. Br Dent J 2013, 215(10):505-11. doi:10.1038/sj.bdj.2013.1094
  • [6]Van der Veen MH, Attin R, Schwestka-Polly R, Wiechmann D: Caries outcomes after orthodontic treatment with fixed appliances: do lingual brackets make a difference? Eur J Oral Sci 2010, 118(3):298-303. doi:10.1111/j.1600-0722.2010.00733.x
  • [7]Beyling F, Schwestka-Polly R, Wiechmann D: Lingual orthodontics for children and adolescents: improvement of the indirect bonding protocol. Head Face Med 2013, 9(1):27. doi:10.1186/1746-160X-9-27 BioMed Central Full Text
  • [8]Lim B-S, Lee S-J, Lee J-W, Ahn S-J: Quantitative analysis of adhesion of cariogenic streptococci to orthodontic raw materials. Am J Orthod Dentofacial Orthop 2008, 133(6):882-8. doi:10.1016/j.ajodo.2006.07.027
  • [9]Brown ML, Davis HB, Tufekci E, Crowe JJ, Covell DA, Mitchell JC: Ion release from a novel orthodontic resin bonding agent for the reduction and/or prevention of white spot lesions. An in vitro study. Angle Orthod. 2011, 81(6):1014-20. doi:10.2319/120710-708.1
  • [10]Manfred L, Covell DA, Crowe JJ, Tufekci E, Mitchell JC: A novel biomimetic orthodontic bonding agent helps prevent white spot lesions adjacent to brackets. Angle Orthod 2013, 83(1):97-103. doi:10.2319/110811-689.1
  • [11]Bechtold TE, Sobiegalla A, Markovic M, Berneburg M, Göz GR: In vivo effectiveness of enamel sealants around orthodontic brackets. J Orofac Orthop 2013, 74(6):447-57. doi:10.1007/s00056-013-0178-4
  • [12]Cacciafesta V, Sfondrini MF, Tagliani P, Klersy C: In-vitro fluoride release rates from 9 orthodontic bonding adhesives. Am J Orthod Dentofacial Orthop 2007, 132(5):656-62. doi:10.1016/j.ajodo.2005.09.037
  • [13]Lim B-S, Lee S-J, Lim Y-J, Ahn S-J: Effects of periodic fluoride treatment on fluoride ion release from fresh orthodontic adhesives. J Dent 2011, 39(11):788-94. doi:10.1016/j.jdent.2011.08.011
  • [14]Lin J, Zhu J, Gu X, Wen W, Li Q, FischerBrandis H, et al.: Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater 2011, 7(3):1346-53. doi:10.1016/j.actbio.2010.10.029
  • [15]Melo MAS, Morais WA, Passos VF, Lima JPM, Rodrigues LKA: Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles. Clin Oral Investig 2014, 18(4):1343-50. doi:10.1007/s00784-013-1073-5
  • [16]Ramazanzadeh BA, Merati M, Shafaee H, Dogon L, Sohrabi K: In-vitro evaluation of an experimental method for bonding of orthodontic brackets with self-adhesive resin cements. Eur J Gen Dent 2013, 2(3):264-9. doi:10.4103/2278-9626.116018
  • [17]Borzabadi-Farahani A, Borzabadi E, Lynch E: Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand 2014, 72(6):413-7. doi:10.3109/00016357.2013.859728
  • [18]Ziebura T, Hohoff A, Flieger S, Stamm T: Accidental debondings: Buccal vs fully individualized lingual multibracket appliances. Am J Orthod Dentofacial Orthop 2014, 145(5):649-54. doi:10.1016/j.ajodo.2013.12.030
  • [19]Cao B, Wang Y, Li N, Liu B, Zhang Y: Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent Mater J 2013, 32(2):311-6. doi:10.4012/dmj. 2012-155
  • [20]Ahn S-J, Lee S-J, Kook J-K, Lim B-S: Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009, 25(2):206-13. doi:10.1016/j.dental.2008.06.002
  • [21]Akhavan A, Sodagar A, Mojtahedzadeh F, Sodagar K: Investigating the effect of incorporating nanosilver/nanohydroxyapatite particles on the shear bond strength of orthodontic adhesives. Acta Odontol Scand 2013, 71(5):1038-42. doi:10.3109/00016357.2012.741699
  • [22]Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT: Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 2013, 35(5):676-9. doi:10.1093/ejo/cjs073
  • [23]Reynolds J: A review of direct orthodontic bonding. Br J Orthod. 1975, 2:171-8.
  • [24]Schluesener JK, Schluesener HJ: Nanosilver: application and novel aspects of toxicology. Arch Toxicol 2013, 87(4):569-76. doi:10.1007/s00204-012-1007-z
  • [25]Hernández-Sierra JF, Ruiz F, Pena DC, Martinez-Gutierrez F, Martinez AE, Guillen Ade J, Tapia-Perez H, et al.: The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008, 4(3):237-40. doi:10.1016/j.nano.2008.04.005
  • [26]Allaker RP: The use of nanoparticles to control oral biofilm formation. J Dent Res 2010, 89(11):1175-86. doi:10.1177/0022034510377794
  • [27]Holst A: A 3-year clinical evaluation of Ketac-Silver restorations in primary molars. Swed Dent J 1996, 20(6):209-14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9065982 . Accessed July 31, 2014
  • [28]Hosoya Y, Watanabe E, Tadokoro K, Inoue T, Miyazaki M, Tay FR: Effects of ammonium hexafluorosilicate application on demineralized enamel and dentin of primary teeth. J Oral Sci 2012, 54(3):267-72. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23047038
  • [29]ESPE 3 M. Ketac Silver Sicherheitsdatenblatt. 2012:1–23. Available at: http://dentina.de/pdf/B1C152FE3A5974AFC1257D330034F86A.pdf.
  • [30]Bio Gate. HyMedic 4000 Der antimikrobielle Wirkstoff für medizinische Anwendungen. 2009. p. 1–3.
  • [31]ras GmbH. AgPure technical information, TI/L 1011e. 2014. p. 1–7.
  • [32]DIN Deutsches Institut für Normung. Test methods for shear bond strength of adhesives for orthodontic attachments – Part 2: Bonding of the entire bonding system attachment-adhesive-enamel. 1–12. 2009:1–12. Available at: www.din.de.
  • [33]Artun J, Bergland S: Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 1984, 85(4):333-40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6231863
  • [34]Dahlberg G: Statistical Methods for Medical and Biological Students. Interscience publications, New York; 1940.
  • [35]Bishara SE, Soliman M, Laffoon J, Warren JJ: Effect of changing a test parameter on the shear bond strength of orthodontic brackets. Angle Orthod 2005, 75(5):832-5. doi:10.1043/0003-3219(2005)75[832:EOCATP]2.0.CO;2
  • [36]Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN: Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 2010, 26(5):471-82. doi:10.1016/j.dental.2010.01.005
  • [37]O’Brien KD, Watts DC, Read MJ: Residual debris and bond strength--is there a relationship? Am J Orthod Dentofacial Orthop 1988, 94(3):222-30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3046329 . Accessed July 31, 2014
  • [38]Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, et al.: Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 2007, 19(10):857-71. doi:10.1080/08958370701432108
  • [39]Kassaee MZ, Akhavan A, Sheikh N, Sodagar A: Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci 2008, 110(3):1699-703. doi:10.1002/app.28762
  • [40]Chen X, Schluesener HJ: Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008, 176(1):1-12. doi:10.1016/j.toxlet.2007.10.004
  • [41]Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, et al.: Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 2010, 30(2):162-8. doi:10.1016/j.etap.2010.05.004
  • [42]Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, et al.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32(36):9810-7. doi:10.1016/j.biomaterials.2011.08.085
  • [43]Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS, et al.: Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater 2014, 10(1):439-49. doi:10.1016/j.actbio.2013.09.037
  • [44]Bio Gate. HyMedicTM – antimikrobielle Wirkstoffe für vielfältige Anwendungen. 1–4. Available at: http://www.in-cosmetics.com/__novadocuments/72380?v=635584921190700000.
  • [45]Bio Gate. HyProtect – die neue Dimension funktionaler Beschichtungen in der Medizintechnik. 1–4. Available at: http://bio-gate.de/technologie-loesungen/plasmabeschichtung/.
  • [46]Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, et al.: The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol 2009, 54(6):595-601. doi:10.1016/j.archoralbio.2009.03.004
  • [47]Kawasaki A, Suge T, Ishikawa K, Ozaki K, Matsuo T, Ebisu S: Ammonium hexafluorosilicate increased acid resistance of bovine enamel and dentine. J Mater Sci Mater Med 2005, 16(5):461-6. doi:10.1007/s10856-005-6987-2
  • [48]Cheng L, Zhang K, Melo MAS, Weir MD, Zhou X, Xu HHK: Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J Dent Res 2012, 91(6):598-604. doi:10.1177/0022034512444128
  • [49]Cheng L, Weir MD, Xu HHK, Antonucci JM, Lin NJ, Lin-Gibson S, et al.: Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B Appl Biomater. 2012, 100(5):1378-86. doi:10.1002/jbm.b.32709
  • [50]Besinis A, De Peralta T, Handy RD: Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology 2014, 8(7):745-54. doi:10.3109/17435390.2013.825343
  • [51]Reimann S, Mezey J, Daratsianos N, Jäger A, Bourauel C: The influence of adhesives and the base structure of metal brackets on shear bond strength. J Orofac Orthop 2012, 73(3):184-93. doi:10.1007/s00056-012-0074-3
  • [52]Reeh ES, Douglas WH, Levine MJ: Lubrication of human and bovine enamel compared in an artificial mouth. Arch Oral Biol 1995, 40(11):1063-72. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8670025 . Accessed September 30, 2014
  • [53]Abuabara A, dos Santos AJS, Aguiar FHB, Lovadino JR: Evaluation of microleakage in human, bovine and swine enamels. Braz Oral Res 2004, 18(4):312-6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16089262 . Accessed September 15, 2014
  • [54]Da Silva Fidalgo TK, Pithon MM, do Santos RL, de Alencar NA, Abrahão AC, Maia LC: Influence of topical fluoride application on mechanical properties of orthodontic bonding materials under pH cycling. Angle Orthod 2012, 82(6):1071-7. doi:10.2319/101711-644.1
  • [55]Al-Kawari HM, Al-Jobair AM: Effect of different preventive agents on bracket shear bond strength: in vitro study. BMC Oral Health 2014, 14(1):28. doi:10.1186/1472-6831-14-28 BioMed Central Full Text
  • [56]Nakamichi I, Iwaku M, Fusayama T: Bovine teeth as possible substitutes in the adhesion test. J Dent Res 1983, 62(10):1076-81. doi:10.1177/00220345830620101501
  • [57]Oesterle LJ, Shellhart WC, Belanger GK: The use of bovine enamel in bonding studies. Am J Orthod Dentofacial Orthop 1998, 114(5):514-9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9810047 . Accessed October 2, 2014
  文献评价指标  
  下载次数:33次 浏览次数:28次