期刊论文详细信息
BMC Genomics
Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species
Julie Endrizzi1  Alicia Satterly1  Dorothy Pei1  Samuel Minot1  Michael F Palopoli1 
[1] Department of Biology, Bowdoin College, Brunswick 6500, College Station ME 04011, USA
关键词: Coevolution;    tRNA structure;    Genome rearrangements;    Mitochondria;    Follicle mites;    Demodex;    Acariformes;    Acari;    Chelicerata;   
Others  :  1127148
DOI  :  10.1186/1471-2164-15-1124
 received in 2014-07-25, accepted in 2014-11-26,  发布年份 2014
PDF
【 摘 要 】

Background

Follicle mites of the genus Demodex are found on a wide diversity of mammals, including humans; surprisingly little is known, however, about the evolution of this association. Additional sequence information promises to facilitate studies of Demodex variation within and between host species. Here we report the complete mitochondrial genome sequences of two species of Demodex known to live on humans—Demodex brevis and D. folliculorum—which are the first such genomes available for any member of the genus. We analyzed these sequences to gain insight into the evolution of mitochondrial genomes within the Acariformes. We also used relaxed molecular clock analyses, based on alignments of mitochondrial proteins, to estimate the time of divergence between these two species.

Results

Both Demodex genomes shared a novel gene order that differs substantially from the ancestral chelicerate pattern, with transfer RNA (tRNA) genes apparently having moved much more often than other genes. Mitochondrial tRNA genes of both species were unusually short, with most of them unable to encode tRNAs that could fold into the canonical cloverleaf structure; indeed, several examples lacked both D- and T-arms. Finally, the high level of sequence divergence observed between these species suggests that these two lineages last shared a common ancestor no more recently than about 87 mya.

Conclusions

Among Acariformes, rearrangements involving tRNA genes tend to occur much more often than those involving other genes. The truncated tRNA genes observed in both Demodex species would seem to require the evolution of extensive tRNA editing capabilities and/or coevolved interacting factors. The molecular machinery necessary for these unusual tRNAs to function might provide an avenue for developing treatments of skin disorders caused by Demodex. The deep divergence time estimated between these two species sets a lower bound on the time that Demodex have been coevolving with their mammalian hosts, and supports the hypothesis that there was an early split within the genus Demodex into species that dwell in different skin microhabitats.

【 授权许可】

   
2014 Palopoli et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220023621847.pdf 2414KB PDF download
Figure 5. 56KB Image download
Figure 4. 103KB Image download
Figure 3. 88KB Image download
Figure 2. 56KB Image download
Figure 1. 145KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Desch CE, Nutting WB: Demodex folliculorum (Simon) and D. brevis Akbulatova of man: redescription and reevalution. J Parasitol 1972, 58(1):169-177.
  • [2]Desch CE: Human hair follicle mites and forensic acarology. Exp Appl Acarol 2009, 49(1–2):143-146.
  • [3]Thoemmes ME, Fergus DJ, Urban J, Trautwein M, Dunn RR: Ubiquity and diversity of human-associated Demodex mites. PLoS Onein press
  • [4]Zhao YE, Wu LP, Hu L, Xu JR: Association of blepharitis with Demodex: a meta-analysis. Ophthalmic Epidemiol 2012, 19(2):95-102.
  • [5]Jarmuda S, O’Reilly N, Zaba R, Jakubowicz O, Szkaradkiewicz A, Kavanagh K: Potential role of Demodex mites and bacteria in the induction of rosacea. J Med Microbiol 2012, 61(Pt 11):1504-1510.
  • [6]Nara T, Katoh N, Inoue K, Yamada M, Arizono N, Kishimoto S: Eosinophilic folliculitis with a Demodex folliculorum infestation successfully treated with ivermectin in a man infected with human immunodeficiency virus. Clin Exp Dermatol 2009, 34(8):e981-e983.
  • [7]Chen W, Plewig G: Human demodicosis: revisit and a proposed classification. Br J Dermatol 2014, 170(6):1219-1225.
  • [8]Escobar-Páramo P, Grenet K, Le Menac’h A, Rode L, Salgado E, Amorin C, Gouriou S, Picard B, Rahimy MC, Andremont A, Denamur E, Ruimy R: Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 2004, 70(9):5698-5700.
  • [9]Jones EP, Eager HM, Gabriel SI, Jóhannesdóttir F, Searle JB: Genetic tracking of mice and other bioproxies to infer human history. Trends Genet 2013, 29(5):298-308.
  • [10]Reed DL, Light JE, Allen JM, Kirchman JJ: Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol 2007, 5:7. BioMed Central Full Text
  • [11]Zhao YE, Wu LP, Hu L, Xu Y, Wang ZH, Liu WY: Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA. Parasitol Res 2012, 111(5):2109-2114.
  • [12]Zhao YE, Hu L, Ma JX: Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA. Parasitol Res 2013, 112(11):3703-3711.
  • [13]Walter DE, Proctor H: Mites: Ecology, Evolution & Behaviour. 2nd edition. Netherlands: Springer; 2013.
  • [14]Shao R, Barker SC, Mitani H, Takahashi M, Fukunaga M: Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari: Acariformes). J Mol Evol 2006, 63(2):251-261.
  • [15]Domes K, Maraun M, Scheu S, Cameron SL: The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics 2008, 9:532. BioMed Central Full Text
  • [16]Dermauw W, Van Leeuwen T, Vanholme B, Tirry L: The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genomics 2009, 10:107. BioMed Central Full Text
  • [17]Ernsting BR, Edwards DD, Aldred KJ, Fites JS, Neff CR: Mitochondrial genome sequence of Unionicola foili (Acari: Unionicolidae): a unique gene order with implications for phylogenetic inference. Exp Appl Acarol 2009, 49(4):305-316.
  • [18]Klimov PB, OConnor BM: Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics 2009, 10:598. BioMed Central Full Text
  • [19]Yuan M-L, Wei D-D, Wang B-J, Dou W, Wang J-J: The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics 2010, 11:597. BioMed Central Full Text
  • [20]Gissi C, Iannelli F, Pesole G: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity (Edinb) 2008, 101(4):301-320.
  • [21]Min XJ, Hickey DA: DNA barcodes provide a quick preview of mitochondrial genome composition. PLoS One 2007, 2(3):e325.
  • [22]Martin AP: Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol Biol Evol 1995, 12(6):1124-1131.
  • [23]Rocha EP, Danchin A: Base composition bias might result from competition for metabolic resources. Trends Genet 2002, 18(6):291-294.
  • [24]Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999, 27(8):1767-1780.
  • [25]Fahrein K, Talarico G, Braband A, Podsiadlowski L: The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida. BMC Genomics 2007, 8:386. BioMed Central Full Text
  • [26]Masta SE: Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates: comparisons with a harvestman (Arachnida: Opiliones Phalangium opilio). Gene 2010, 449(1–2):9-21.
  • [27]Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF: Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol Biol Evol 2009, 26(7):1607-1617.
  • [28]Ovchinnikov S, Masta SE: Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias. BMC Evol Biol 2012, 12:31. BioMed Central Full Text
  • [29]Lee WJ, Conroy J, Howell WH, Kocher TD: Structure and evolution of teleost mitochondrial control regions. J Mol Evol 1995, 41(1):54-66.
  • [30]Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF: Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 2012, 40(7):2833-2845.
  • [31]Masta SE, Boore JL: Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 2008, 25(5):949-959.
  • [32]Watanabe YI, Suematsu T, Ohtsuki T: Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front Genet 2014, 5:109.
  • [33]Chimnaronk S, Jeppesen MG, Suzuki T, Nyborg J, Watanabe K: Dual-mode recognition of noncanonical tRNAsSer by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 2005, 24:3369-3379.
  • [34]Ohtsuki T, Watanabe Y, Takemoto C, Kawai G, Ueda T, Kita K, Kojima S, Kaziro Y, Nyborg J, Watanabe K: An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. J Biol Chem 2001, 276(24):21571-21577.
  • [35]Wende S, Platzer EG, Jühling F, Pütz J, Florentz C, Stadler PF, Mörl M: Biological evidence for the world’s smallest tRNAs. Biochimie 2014, 100:151-158.
  • [36]Fisher RP, Parisi MA, Clayton DA: Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev 1989, 3(12B):2202-2217.
  • [37]Segovia R, Pett W, Trewick S, Lavrov DV: Extensive and evolutionarily persistent mitochondrial tRNA editing in Velvet Worms (phylum Onychophora). Mol Biol Evol 2011, 28(10):2873-2881.
  • [38]Mironov SV, Bochkov AV: Modern conceptions concerning the macrophylogeny of acariform mites (Chelicerata, Acariformes). Entomol Rev 2009, 89(8):975-992.
  • [39]Dunlop JA, Selden PA: Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Exp Appl Acarol 2009, 48(3):183-197.
  • [40]Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J: Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol 2010, 56(1):222-241.
  • [41]Pepato AR, da Rocha CEF, Dunlop JA: Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 2010, 10:235. BioMed Central Full Text
  • [42]dos Reis M, Donoghue PC, Yang Z: Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biol Lett 2014, 10(1):20131003.
  • [43]Zhou CF, Wu S, Martin T, Luo ZX: A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 2013, 500(7461):163-167.
  • [44]Van de Peer Y, Frickey T, Taylor JS, Meyer A: Dealing with saturation at the amino acid level: a case study involving anciently duplicated zebrafish genes. Gene 2002, 295:205-211.
  • [45]Izdebska JN: Selected aspects of adaptations to the parasitism of hair follicle mites (Acari: Demodecidae) from hoofed mammals. Eur Bison Cons News 2009, 2:80-88.
  • [46]Laslett D, Canbäck B: ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24(2):172-175.
  • [47]Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20(17):3252-3255.
  • [48]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [49]Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF: MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013, 69(2):313-319.
  • [50]Darty K, Denise A, Ponty Y: VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25(15):1974-1975.
  • [51]Lin YC, Lu CL, Liu YC, Tang CY: SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges. Nucleic Acids Res 2006, 34(Web Server issue):W696-W699.
  • [52]Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T: GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res 2010, 38(Web Server issue):W23-W28.
  • [53]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Mol Biol Evol 2012, 29(8):1969-1973.
  • [54]Rambaut A, Drummond AJ: Tracer v1.5 2007. Available from http://tree.bio.ed.ac.uk/software/tracer webcite
  文献评价指标  
  下载次数:80次 浏览次数:41次