期刊论文详细信息
BMC Systems Biology
Modeling of celiac disease immune response and the therapeutic effect of potential drugs
Oleg V Demin3  Neil Benson1  M Victoria Flores5  Cesar Pichardo-Almarza4  Lourdes Cucurull-Sanchez2  Victor V Sokolov3  Sergey V Smirnov3  Oleg O Demin3 
[1] Present affiliation: Xenologiq Ltd, Canterbury, UK;Present affiliation: GlaxoSmithKline Medicines Research Centre, Stevenage, UK;Institute for System Biology SPb, Moscow, Russia;Present affiliation: InScilico Ltd, London, UK;Present affiliation: eTherapeutics plc, Long Hanborough, UK
关键词: Immune response;    Drug development;    Gluten;    Mathematical modeling;    Celiac disease;   
Others  :  1142719
DOI  :  10.1186/1752-0509-7-56
 received in 2013-02-13, accepted in 2013-06-27,  发布年份 2013
PDF
【 摘 要 】

Background

Celiac disease (CD) is an autoimmune disorder that occurs in genetically predisposed people and is caused by a reaction to the gluten protein found in wheat, which leads to intestinal villous atrophy. Currently there is no drug for treatment of CD. The only known treatment is lifelong gluten-free diet. The main aim of this work is to develop a mathematical model of the immune response in CD patients and to predict the efficacy of a transglutaminase-2 (TG-2) inhibitor as a potential drug for treatment of CD.

Results

A thorough analysis of the developed model provided the following results:

1. TG-2 inhibitor treatment leads to insignificant decrease in antibody levels, and hence remains higher than in healthy individuals.

2. TG-2 inhibitor treatment does not lead to any significant increase in villous area.

3. The model predicts that the most effective treatment of CD would be the use of gluten peptide analogs that antagonize the binding of immunogenic gluten peptides to APC. The model predicts that the treatment of CD by such gluten peptide analogs can lead to a decrease in antibody levels to those of normal healthy people, and to a significant increase in villous area.

Conclusions

The developed mathematical model of immune response in CD allows prediction of the efficacy of TG-2 inhibitors and other possible drugs for the treatment of CD: their influence on the intestinal villous area and on the antibody levels. The model also allows to understand what processes in the immune response have the strongest influence on the efficacy of different drugs. This model could be applied in the pharmaceutical R&D arena for the design of drugs against autoimmune small intestine disorders and on the design of their corresponding clinical trials.

【 授权许可】

   
2013 Demin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328132340199.pdf 712KB PDF download
Figure 5. 44KB Image download
Figure 4. 71KB Image download
20150602021447272.pdf 533KB PDF download
Figure 2. 32KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schuppan D: Current concepts of celiac disease pathogenesis. Gastroenterology 2000, 119:234-242.
  • [2]Tennyson CA, Suzanne K, Green L, Green P: New and developing therapies for celiac disease. Ther Adv Gastroenterol 2009, 2:303-309.
  • [3]Gianfrani C, Auricchio S, Troncone R: Adaptive and innate immune responses in celiac disease. Immunol Lett 2005, 99:141-145.
  • [4]Stepniak D, Koning F: Celiac disease-sandwiched between innate and adaptive immunity. Hum Immunol 2006, 67:460-468.
  • [5]Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C: Structural basis for gluten intolerance in celiac sprue. Science 2002, 297:2275-2279.
  • [6]Tollefsen S, Arentz-Hansen H, Fleckenstein B, Molberg O, Ra’ki M, Kwok WW, Jung G, Lundin KE, Sollid LM: HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest 2006, 116:2226-2236.
  • [7]Bethune MT, Ribka E, Khosla C, Sestak K: Transepithelial transport and enzymatic detoxification of gluten in gluten-sensitive rhesus macaques. PLoS One 2008, 3:e1857.
  • [8]Byrne G, Feighery C, Jackson J, Kelly J: Coeliac disease autoantibodies mediate significant inhibition of tissue transglutaminase. Clin Immunol 2010, 136:426-431.
  • [9]Colombel JF, Mascart-Lemone F, Nemeth J, Vaerman JP, Dive C, Rambaud JC: Jejunal immunoglobulin and antigliadin antibody secretion in adult coeliac disease. Gut 1990, 31:1345-1349.
  • [10]Ankelo M, Kleimola V, Simell S, Simell O, Knip M, Jokisalo E, Tarkia M, Westerlund A, He Q, Viander M, Ilonen J, Hinkkanen AE: Antibody responses to deamidated gliadin peptide show high specificity and parallel antibodies to tissue transglutaminase in developing coeliac disease. Clin Exp Immunol 2007, 150:285-293.
  • [11]Gutnikov S, Melnikov Y: A simple non-linear model of immune response. Chaos Solitons & Fractals 2003, 16:125-132.
  • [12]Dibrov BF, Livshits MA, Volkenstein MV: Mathematical model of immune processes. J Theor Biol 1977, 65:609-631.
  • [13]Stengel RF, Ghigliazza RM, Kulkarni NV: Optimal enhancement of immune response. Bioinformatics 2002, 18:1227-1235.
  • [14]Bruni C, Giovenco MA, Koch G, Strom R: A dynamical model of humoral immune response. Math Biosci 1975, 27:191-211.
  • [15]Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE: Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 2004, 173:494-506.
  • [16]Wilson DP, Timms P, McElwain DL: A mathematical model for the investigation of the Th1 immune response to Chlamydia trachomatis. Math Biosci 2003, 182:27-44.
  • [17]Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A: Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 2008, 135:194-204.
  • [18]Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, Not T, Zampini L, Catassi C, Fasano A: Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006, 41:408-419.
  • [19]Ferguson A, Murray D: Quantitation of intraepithelial lymphocytes in human jejunum. Gut 1971, 12:988-994.
  • [20]Mazzarella G, Maglio M, Paparo F, Nardone G, Stefanile R, Greco L, van de Wal Y, Kooy Y, Koning F, Auricchio S, Troncone R: An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLA-DQ8 positive but not HLA-DQ8 negative coeliac patients. Gut 2003, 52:57-62.
  • [21]Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004, 21:357-366.
  • [22]Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S: A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004, 21:367-377.
  • [23]Ebert EC: IL-15 converts human intestinal intraepithelial lymphocytes to CD94 producers of IFN-gamma and IL-10, the latter promoting Fas ligand-mediated cytotoxicity. Immunology 2005, 115:118-126.
  • [24]Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, Paulli M, Cifone MG, Corazza GR: Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006, 55:469-477.
  • [25]Harris KM, Fasano A, Mann DL: Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol 2010, 135:430-439.
  • [26]Regamey N, Obregon C, Ferrari-Lacraz S, van Leer C, Chanson M, Nicod LP, Geiser T: Airway epithelial IL-15 transforms monocytes into dendritic cells. Am J Respir Cell Mol Biol 2007, 37:75-84.
  • [27]Castellanos-Rubio A, Santin I, Irastorza I, Castano L, Carlos Vitoria J, Ramon Bilbao J: TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin. Autoimmunity 2009, 42:69-73.
  • [28]Kamada N, Hisamatsu T, Honda H, Kobayashi T, Chinen H, Kitazume MT, Takayama T, Okamoto S, Koganei K, Sugita A, Kanai T, Hibi T: Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. J Immunol 2009, 183:1724-1731.
  • [29]Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE, Turner SP, Raskin L, Desai B, Faubion WA, de Waal Malefyt R, Pierce RH, McClanahan T, Kastelein RA: Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 2009, 206:525-534.
  • [30]Manavalan JS, Hernandez L, Shah JG, Konikkara J, Naiyer AJ, Lee AR, Ciaccio E, Minaya MT, Green PH, Bhagat G: Serum cytokine elevations in celiac disease: association with disease presentation. Hum Immunol 2010, 71:50-57.
  • [31]Meresse B, Verdier J, Cerf-Bensussan N: The cytokine interleukin 21: a new player in coeliac disease? Gut 2008, 57:879-881.
  • [32]Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM, Banchereau J, Ueno H: Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 2009, 31:158-169.
  • [33]De Nitto D, Monteleone I, Franze E, Pallone F, Monteleone G: Involvement of interleukin-15 and interleukin-21, two gamma-chain-related cytokines, in celiac disease. World J Gastroenterol 2009, 15:4609-4614.
  • [34]Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI: IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol 2007, 178:2827-2834.
  • [35]Wei L, Laurence A, Elias KM, O’Shea JJ: IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007, 282:34605-34610.
  • [36]Caputo I, Barone MV, Martucciello S, Lepretti M, Esposito C: Tissue transglutaminase in celiac disease: role of autoantibodies. Amino Acids 2009, 36:693-699.
  • [37]Bernardo D, Garrote JA, Allegretti Y, Leon A, Gomez E, Bermejo-Martin JF, Calvo C, Riestra S, Fernandez-Salazar L, Blanco-Quiros A, Chirdo F, Arranz E: Higher constitutive IL15R alpha expression and lower IL-15 response threshold in coeliac disease patients. Clin Exp Immunol 2008, 154:64-73.
  • [38]Liu Z, Geboes K, Colpaert S, D’Haens GR, Rutgeerts P, Ceuppens JL: IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J Immunol 2000, 164:3608-3615.
  • [39]Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, Brousse N, Cellier C, Cerf-Bensussan N: Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 2003, 125:730-745.
  • [40]Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Carteni M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A: Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006, 55:1443-1449.
  • [41]Smecuol E, Sugai E, Niveloni S, Vazquez H, Pedreira S, Mazure R, Moreno ML, Label M, Mauriсo E, Fasano A, Meddings J, Bai JC: Permeability, zonulin production, and enteropathy in dermatitis herpetiformis. Clin Gastroenterol Hepatol 2005, 3:335-341.
  • [42]Iezzi G, Karjalainen K, Lanzavecchia A: The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 1998, 8:89-95.
  • [43]Iber D, Maini PK: A mathematical model for germinal centre kinetics and affinity maturation. J Theor Biol 2002, 219:153-175.
  • [44]da Silva Neves MM, González-Garcia MB, Nouws HP, Delerue-Matos C, Santos-Silva A, Costa-García A: Celiac disease diagnosis and gluten-free food analytical control. Anal Bioanal Chem 2010, 397:1743-1753.
  • [45]Aleanzi M, Demonte AM, Esper C, Garcilazo S, Waggener M: Celiac disease: antibody recognition against native and selectively deamidated gliadin peptides. Clin Chem 2001, 47:2023-2028.
  • [46]Gianfrani C, Siciliano RA, Facchiano AM, Camarca A, Mazzeo MF, Costantini S, Salvati VM, Maurano F, Mazzarella G, Iaquinto G, Bergamo P, Rossi M: Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology 2007, 133:780-789.
  • [47]Hook R, Jeeves TA: Direct search solution of numerical and statistical problems. J ACM 1961, 8:212-229.
  • [48]Gizzatkulov NM, Goryanin II, Metelkin EA, Mogilevskaya EA, Peskov KV, Demin OV: DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results. BMC Syst Biol 2010, 4:109. BioMed Central Full Text
  • [49]Motulsky HJ, Christopoulos A: Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc: San Diego CA; 2003.
  • [50]Agardh D, Lynch K, Brundin C, Ivarsson SA, Lernmark A, Cilio CM: Reduction of tissue transglutaminase autoantibody levels by gluten-free diet is associated with changes in subsets of peripheral blood lymphocytes in children with newly diagnosed coeliac disease. Clin Exp Immunol 2006, 144:67-75.
  • [51]Information resource about Celiac Disease. [http://www.celiac.com webcite]
  • [52]Xia J, Siegel M, Bergseng E, Sollid LM, Khosla C: Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin. J Am Chem Soc 2006, 128:1859-1867.
  • [53]Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS: Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg Med Chem 2008, 16:2053-2062.
  • [54]Siegel M, Xia J, Khosla C: Structure-based design of alpha-amido aldehyde containing gluten peptide analogues as modulators of HLA-DQ2 and transglutaminase 2. Bioorg Med Chem 2007, 15:6253-6261.
  • [55]Xia J, Bergseng E, Fleckenstein B, Siegel M, Kim CY, Khosla C, Sollid LM: Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg Med Chem 2007, 15:6565-6573.
  • [56]Schuppan D, Junker Y, Barisani D: Celiac disease: from pathogenesis to novel therapies. Gastroenterology 2009, 137:1912-1933.
  • [57]Ciccocioppo R, Di Sabatino A, Corazza GR: The immune recognition of gluten in coeliac disease. Clin Exp Immunol 2005, 140:408-416.
  • [58]Benson N, Cucurull-Sanchez L, Demin O, Smirnov S, van der Graaf P: Reducing systems biology to practice in pharmaceutical company research; selected case studies. Adv Exp Med Biol 2012, 736:607-615.
  • [59]Agoram BM, Demin O: Integration not isolation: arguing the case for quantitative and systems pharmacology in drug discovery and development. Drug Discov Today 2011, 16:1031-1036.
  文献评价指标  
  下载次数:18次 浏览次数:9次