BMC Genomics | |
Transcriptome of Saccharomyces cerevisiae during production of D-xylonate | |
Laura Ruohonen1  Merja Penttilä1  Marilyn Wiebe1  Eija Rintala1  Merja Oja1  Dominik Mojzita1  | |
[1] VTT Technical Research Centre of Finland, P.O. Box 1000, Espoo FI-02044 VTT, Finland | |
关键词: Weak organic acids; Cell wall integrity pathway; Stress response; Microarrays; D-xylonate production; D-xylose; Saccharomyces cerevisiae; | |
Others : 1140918 DOI : 10.1186/1471-2164-15-763 |
|
received in 2014-02-25, accepted in 2014-08-29, 发布年份 2014 | |
【 摘 要 】
Background
Production of D-xylonate by the yeast S. cerevisiae provides an example of bioprocess development for sustainable production of value-added chemicals from cheap raw materials or side streams. Production of D-xylonate may lead to considerable intracellular accumulation of D-xylonate and to loss of viability during the production process. In order to understand the physiological responses associated with D-xylonate production, we performed transcriptome analyses during D-xylonate production by a robust recombinant strain of S. cerevisiae which produces up to 50 g/L D-xylonate.
Results
Comparison of the transcriptomes of the D-xylonate producing and the control strain showed considerably higher expression of the genes controlled by the cell wall integrity (CWI) pathway and of some genes previously identified as up-regulated in response to other organic acids in the D-xylonate producing strain. Increased phosphorylation of Slt2 kinase in the D-xylonate producing strain also indicated that D-xylonate production caused stress to the cell wall. Surprisingly, genes encoding proteins involved in translation, ribosome structure and RNA metabolism, processes which are commonly down-regulated under conditions causing cellular stress, were up-regulated during D-xylonate production, compared to the control. The overall transcriptional responses were, therefore, very dissimilar to those previously reported as being associated with stress, including stress induced by organic acid treatment or production. Quantitative PCR analyses of selected genes supported the observations made in the transcriptomic analysis. In addition, consumption of ethanol was slower and the level of trehalose was lower in the D-xylonate producing strain, compared to the control.
Conclusions
The production of organic acids has a major impact on the physiology of yeast cells, but the transcriptional responses to presence or production of different acids differs considerably, being much more diverse than responses to other stresses. D-Xylonate production apparently imposed considerable stress on the cell wall. Transcriptional data also indicated that activation of the PKA pathway occurred during D-xylonate production, leaving cells unable to adapt normally to stationary phase. This, together with intracellular acidification, probably contributes to cell death.
【 授权许可】
2014 Mojzita et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150325152659292.pdf | 3207KB | download | |
Figure 6. | 224KB | Image | download |
Figure 5. | 86KB | Image | download |
Figure 4. | 147KB | Image | download |
Figure 3. | 130KB | Image | download |
Figure 2. | 124KB | Image | download |
Figure 1. | 132KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Chun BW, Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A: The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Appl Biochem Biotechnol 2006, 131(1–3):645-658.
- [2]Niu W, Molefe MN, Frost JW: Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 2003, 125(43):12998-12999.
- [3]Zamora F, Bueno M, Molina I, Iribarren JI, Muñoz-Guerra S, Galbis JA: Stereoregular copolyamides derived from D-xylose and L-arabinose. Macromolecules 2000, 33(6):2030-2038.
- [4]Toivari MH, Nygard Y, Penttila M, Ruohonen L, Wiebe MG: Microbial D-xylonate production. Appl Microbiol Biotechnol 2012, 96(1):1-8.
- [5]Buchert J: Biotechnical oxidation of D-xylose and hemicellulose hydrolyzates by Gluconobacter oxydans. Dissertation Helsinki Univ Technol 1990.
- [6]Toivari MH, Ruohonen L, Richard P, Penttila M, Wiebe MG: Saccharomyces cerevisiae engineered to produce D-xylonate. Appl Microbiol Biotechnol 2010, 88(3):751-760.
- [7]Nygard Y, Toivari MH, Penttila M, Ruohonen L, Wiebe MG: Bioconversion of d-xylose to d-xylonate with Kluyveromyces lactis. Metab Eng 2011, 13(4):383-391.
- [8]Liu H, Valdehuesa KN, Nisola GM, Ramos KR, Chung WJ: High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli. Bioresour Technol 2011, 115:244-248.
- [9]Toivari M, Nygard Y, Kumpula EP, Vehkomaki ML, Bencina M, Valkonen M, Maaheimo H, Andberg M, Koivula A, Ruohonen L, et al.: Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab Eng 2012, 14(4):427-436.
- [10]Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K: Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 2004, 15(2):706-720.
- [11]Piper P, Calderon CO, Hatzixanthis K, Mollapour M: Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 2001, 147(Pt 10):2635-2642.
- [12]Abbott DA, Suir E, van Maris AJ, Pronk JT: Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 2008, 74(18):5759-5768.
- [13]Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I: Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 2005, 337(1):95-103.
- [14]Mira NP, Becker JD, Sa-Correia I: Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. Omics 2010, 14(5):587-601.
- [15]Mira NP, Lourenco AB, Fernandes AR, Becker JD, Sa-Correia I: The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 2009, 9(2):202-216.
- [16]Legras JL, Erny C, Le Jeune C, Lollier M, Adolphe Y, Demuyter C, Delobel P, Blondin B, Karst F: Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids. Appl Environ Microbiol 2010, 76(22):7526-7535.
- [17]Mira NP, Teixeira MC, Sa-Correia I: Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. Omics 2010, 14(5):525-540.
- [18]Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, van Maris AJ: Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 2007, 7(6):819-833.
- [19]Traff KL, Jonsson LJ, Hahn-Hagerdal B: Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 2002, 19(14):1233-1241.
- [20]Futschik ME, Carlisle B: Noise-robust soft clustering of gene expression time-course data. J Bioinforma Comput Biol 2005, 3(4):965-988.
- [21]Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR: GenMAPP 2: new features and resources for pathway analysis. BMC Bioinform 2007, 8:217. BioMed Central Full Text
- [22]Carmelo V, Santos H, Sa-Correia I: Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1997, 1325(1):63-70.
- [23]Martinez-Munoz GA, Kane P: Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 2008, 283(29):20309-20319.
- [24]Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD: Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 2008, 8:83. BioMed Central Full Text
- [25]Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S: ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 2009, 73(4):577-593.
- [26]Gregori C, Schuller C, Frohner IE, Ammerer G, Kuchler K: Weak organic acids trigger conformational changes of the yeast transcription factor War1 in vivo to elicit stress adaptation. J Biol Chem 2008, 283(37):25752-25764.
- [27]Hazelwood LA, Tai SL, Boer VM, de Winde JH, Pronk JT, Daran JM: A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 2006, 6(6):937-945.
- [28]Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K: War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 2003, 23(5):1775-1785.
- [29]Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M: Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 1997, 2(1):12-24.
- [30]Jung US, Levin DE: Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 1999, 34(5):1049-1057.
- [31]Levin DE: Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2005, 69(2):262-291.
- [32]Wolfger H, Mahe Y, Parle-McDermott A, Delahodde A, Kuchler K: The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 1997, 418(3):269-274.
- [33]Jung US, Sobering AK, Romeo MJ, Levin DE: Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol 2002, 46(3):781-789.
- [34]Kawahata M, Masaki K, Fujii T, Iefuji H: Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 2006, 6(6):924-936.
- [35]de Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P: Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 2001, 18(15):1413-1428.
- [36]Hirasawa T, Ookubo A, Yoshikawa K, Nagahisa K, Furusawa C, Sawai H, Shimizu H: Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in l-lactate production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2009, 84(6):1149-1159.
- [37]Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000, 11(12):4241-4257.
- [38]Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA: Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 2001, 12(2):323-337.
- [39]de Nobel H, Ruiz C, Martin H, Morris W, Brul S, Molina M, Klis FM: Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 2000, 146(Pt 9):2121-2132.
- [40]Vilella F, Herrero E, Torres J, de la Torre-Ruiz MA: Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem 2005, 280(10):9149-9159.
- [41]Lieb JD, Liu X, Botstein D, Brown PO: Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 2001, 28(4):327-334.
- [42]Kamada Y, Jung US, Piotrowski J, Levin DE: The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 1995, 9(13):1559-1571.
- [43]Serrano R, Martin H, Casamayor A, Arino J: Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 2006, 281(52):39785-39795.
- [44]Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, et al.: Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 2000, 287(5454):873-880.
- [45]Zarzov P, Mazzoni C, Mann C: The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J 1996, 15(1):83-91.
- [46]Mollapour M, Piper PW: Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 2006, 6(8):1274-1280.
- [47]Claret S, Gatti X, Doignon F, Thoraval D, Crouzet M: The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae. Eukaryot Cell 2005, 4(8):1375-1386.
- [48]DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278(5338):680-686.
- [49]Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M: "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004, 68(2):187-206.
- [50]Reinders A, Burckert N, Boller T, Wiemken A, De Virgilio C: Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 1998, 12(18):2943-2955.
- [51]Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, et al.: Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. Embo J 1998, 17(12):3326-3341.
- [52]Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M: Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 1987, 7(4):1371-1377.
- [53]Thevelein JM, de Winde JH: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 1999, 33(5):904-918.
- [54]Zdraljevic S, Wagner D, Cheng K, Ruohonen L, Jantti J, Penttila M, Resnekov O, Pesce CG: ingle cell measurements of enzyme level as a predictive tool for cellular fates during organic acid production. Appl Environ Microbiol 2013, 79(24):7569-7582.
- [55]Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M: Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010, 29(15):2515-2526.
- [56]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
- [57]Kauffmann A, Gentleman R, Huber W: arrayQualityMetrics–a bioconductor package for quality assessment of microarray data. Bioinformatics 2009, 25(3):415-416.
- [58]Smyth GK: Limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
- [59]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3. http://www.ncbi.nlm.nih.gov/pubmed/16646809 webcite
- [60]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995, 57:289-300.
- [61]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23(2):257-258.