BMC Microbiology | |
Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia | |
Esperanza Martínez-Romero4  Jaime Mora3  Marco Antonio Rogel4  Gonzalo Torres Tejerizo2  Luis Lozano1  Ernesto Ormeño-Orrillo4  María Julia Althabegoiti4  | |
[1] Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico;Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico;Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico;Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico | |
关键词: Conjugative transfer; Symbiotic plasmid; Quorum sensing; Genome sequence; | |
Others : 1090332 DOI : 10.1186/1471-2180-14-6 |
|
received in 2013-07-10, accepted in 2013-11-29, 发布年份 2014 | |
【 摘 要 】
Background
Rhizobium grahamii belongs to a new phylogenetic group of rhizobia together with Rhizobium mesoamericanum and other species. R. grahamii has a broad-host-range that includes Leucaena leucocephala and Phaseolus vulgaris, although it is a poor competitor for P. vulgaris nodulation in the presence of Rhizobium etli or Rhizobium phaseoli strains. This work analyzed the genome sequence and transfer properties of R. grahamii plasmids.
Results
Genome sequence was obtained from R. grahamii CCGE502 type strain isolated from Dalea leporina in Mexico. The CCGE502 genome comprises one chromosome and two extrachromosomal replicons (ERs), pRgrCCGE502a and pRgrCCGE502b. Additionally, a plasmid integrated in the CCGE502 chromosome was found. The genomic comparison of ERs from this group showed that gene content is more variable than average nucleotide identity (ANI). Well conserved nod and nif genes were found in R. grahamii and R. mesoamericanum with some differences. R. phaseoli Ch24-10 genes expressed in bacterial cells in roots were found to be conserved in pRgrCCGE502b. Regarding conjugative transfer we were unable to transfer the R. grahamii CCGE502 symbiotic plasmid and its megaplasmid to other rhizobial hosts but we could transfer the symbiotic plasmid to Agrobacterium tumefaciens with transfer dependent on homoserine lactones.
Conclusion
Variable degrees of nucleotide identity and gene content conservation were found among the different R. grahamii CCGE502 replicons in comparison to R. mesoamericanum genomes. The extrachromosomal replicons from R. grahamii were more similar to those found in phylogenetically related Rhizobium species. However, limited similarities of R. grahamii CCGE502 symbiotic plasmid and megaplasmid were observed in other more distant Rhizobium species. The set of conserved genes in R. grahamii comprises some of those that are highly expressed in R. phaseoli on plant roots, suggesting that they play an important role in root colonization.
【 授权许可】
2014 Althabegoiti et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128160142449.pdf | 1934KB | download | |
Figure 5. | 53KB | Image | download |
Figure 4. | 78KB | Image | download |
Figure 3. | 102KB | Image | download |
Figure 2. | 134KB | Image | download |
Figure 1. | 126KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E: Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012, 68:149-158.
- [2]Heuer H, Smalla K: Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 2012, 36:1083-1104.
- [3]Harrison PW, Lower RP, Kim NK, Young JP: Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 2010, 18:141-148.
- [4]Wang ET, Van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E: Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 1999, 49:51-65.
- [5]Rogel MA, Ormeño-Orrillo E, Martínez Romero E: Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011, 34:96-104.
- [6]González V, Acosta JL, Santamaría RI, Bustos P, Fernández JL, Hernández González IL, Díaz R, Flores M, Palacios R, Mora J, Dávila G: Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli. Appl Environ Microbiol 2010, 76:1604-1614.
- [7]Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolas MF, Pains Rodrigues Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E: Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012, 13:735. BioMed Central Full Text
- [8]Martínez E, Ormeño E, Rogel MA, González V, Acosta JL, Martínez J: Trends in rhizobial evolution: conservation of symbiotic plasmids, exception or rule. Columbia, Missouri, U.S.A; 2010:8. [21st North American Nitrogen Fixation Conference: 13–18 June 2010]
- [9]Rincón-Rosales R, Lloret L, Ponce E, Martínez-Romero E: Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 2009, 67:103-117.
- [10]López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orrillo E, Martínez-Romero E: Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 2012, 62:2264-2271.
- [11]López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E: Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 2010, 33:322-327.
- [12]Eardly BD, Young JP, Selander RK: Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol 1992, 58:1809-1815.
- [13]Torres Tejerizo G, Del Papa MF, Draghi W, Lozano M, Giusti MÁ, Martini C, Salas ME, Salto I, Wibberg D, Szczepanowski R, Weidner S, Schlüter A, Lagares A, Pistorio M: First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group. J Biotechnol 2011, 155:3-10.
- [14]Hou BC, Wang ET, Li Y Jr, Jia RZ, Chen WF, Gao Y, Dong RJ, Chen WX: Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 2009, 59:3051-3057.
- [15]Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu TY, Schadt CW, Doktycz MJ, Pelletier DA: Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 2012, 194:5991-5993.
- [16]Martínez E, Pardo MA, Palacios R, Cevallos MA: Reiteration of nitrogen gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J Gen Microbiol 1985, 131:1779-1786.
- [17]Barrett CF, Parker MA: Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 2006, 72:1198-1206.
- [18]Klonowska A, Chaintreuil C, Tisseyre P, Miche L, Melkonian R, Ducousso M, Laguerre G, Brunel B, Moulin L: Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiol Ecol 2012, 81:618-635.
- [19]Mishra RP, Tisseyre P, Melkonian R, Chaintreuil C, Miche L, Klonowska A, González S, Bena G, Laguerre G, Moulin L: Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiol Ecol 2012, 79:487-503.
- [20]Pérez-Ramírez NO, Rogel MA, Wang E, Castellanos JZ, Martínez-Romero E: Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 1998, 26:289-296.
- [21]Moulin L, Mornico D, Melkonian R, Klonowska A: Draft genome sequence of Rhizobium mesoamericanum STM3625, a nitrogen-fixing symbiont of Mimosa pudica isolated in French Guiana (South America). Genome Announc 2013, 1:e00066-12.
- [22]Richter M, Rosselló-Mora R: Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009, 106:19126-19131.
- [23]Noel KD, Sanchez A, Fernández L, Leemans J, Cevallos MA: Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 1984, 158:148-155.
- [24]Miller JH: Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972.
- [25]Tun-Garrido C, Bustos P, González V, Brom S: Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 2003, 185:1681-1692.
- [26]Cervantes L, Bustos P, Girard L, Santamaría RI, Dávila G, Vinuesa P, Romero D, Brom S: The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain. BMC Microbiol 2011, 11:149. BioMed Central Full Text
- [27]Torres Tejerizo G, Del Papa MF, De los Ángeles Giusti M, Draghi W, Lozano M, Lagares A, Pistorio M: Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83. Plasmid 2010, 64:177-185.
- [28]Rosenberg C, Hughet T: The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumor induction. Mol Gen Genet 1984, 196:533-536.
- [29]Sambrook J, Fitsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press; 1989.
- [30]Simon R, Priefer U, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biol Technol 1983, 1:784-791.
- [31]Kirchner O, Tauch A: Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 2003, 104:287-299.
- [32]Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pühler A: Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145:69-73.
- [33]Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 1979, 76:1648-1652.
- [34]Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans AD, Jefferson RA: β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 1995, 141:1691-1705.
- [35]Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S: New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 1998, 64:2240-2246.
- [36]Alexeyev MF, Shokolenko IN, Croughan TP: Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 1995, 160:63-67.
- [37]Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK: Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 1997, 94:6036-6041.
- [38]Cha C, Gao P, Chen YC, Shaw PD, Farrand SK: Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 1998, 11:1119-1129.
- [39]Hynes MF, McGregor NF: Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol 1990, 4:567-574.
- [40]Althabegoiti MJ, Lozano L, Torres-Tejerizo G, Ormeño-Orrillo E, Rogel MA, González V, Martínez-Romero E: Genome sequence of Rhizobium grahamii CCGE502, a broad-host-range symbiont with low nodulation competitiveness in Phaseolus vulgaris. J Bacteriol 2012, 194:6651-6652.
- [41]Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res 1998, 8:195-202.
- [42]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
- [43]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
- [44]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
- [45]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
- [46]Wozniak RA, Waldor MK: Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010, 8:552-563.
- [47]Ding H, Yip CB, Hynes MF: Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae Strain VF39SM. J Bacteriol 2013, 195:328-339.
- [48]Bentley SD, Parkhill J: Comparative genomic structure of prokaryotes. Annu Rev Genet 2004, 38:771-792.
- [49]Landeta C, Dávalos A, Cevallos MA, Geiger O, Brom S, Romero D: Plasmids with a chromosome-like role in rhizobia. J Bacteriol 2011, 193:1317-1326.
- [50]Roché P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé JC: Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 1991, 67:1131-1143.
- [51]Torres Tejerizo G, Del Papa MF, Soria-Diaz ME, Draghi W, Lozano M, Giusti Mde L, Manyani H, Megías M, Gil Serrano A, Pühler A, Niehaus K, Lagares A, Pistorio M: The nodulation of alfalfa by the acid-tolerant Rhizobium sp. strain LPU83 does not require sulfated forms of lipochitooligosaccharide nodulation signals. J Bacteriol 2011, 193:30-39.
- [52]Spaink HP, Wijfjes AH, Lugtenberg BJ: Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol 1995, 177:6276-6281.
- [53]Cárdenas L, Domínguez J, Santana O, Quinto C: The role of the nodI and nodJ genes in the transport of Nod metabolites in Rhizobium etli. Gene 1996, 173:183-187.
- [54]Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 1991, 354:125-130.
- [55]Sutton JM, Lea EJ, Downie JA: The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 1994, 91:9990-9994.
- [56]Masson-Boivin C, Giraud E, Perret X, Batut J: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009, 17:458-466.
- [57]Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM: The repABC plasmid family. Plasmid 2008, 60:19-37.
- [58]Mercado-Blanco J, Olivares J: The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid 1994, 32:75-79.
- [59]Brom S, García-De Los Santos A, Cervantes L, Palacios R, Romero D: Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 2000, 44:34-43.
- [60]Crossman LC, Castillo-Ramírez S, McAnnula C, Lozano L, Vernikos GS, Acosta JL, Ghazoui ZF, Hernández-González I, Meakin G, Walker AW, Hynes MF, Young JP, Downie JA, Romero D, Johnston AW, Dávila G, Parkhill J, González V: A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS One 2008, 3:e2567.
- [61]Souza V, Eguiarte LE: Bacteria gone native vs. bacteria gone awry?: plasmidic transfer and bacterial evolution. Proc Natl Acad Sci USA 1997, 94:5501-5503.
- [62]Martínez-Romero E: Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 2009, 28:361-370.
- [63]Lozano L, Hernández-González I, Bustos P, Santamaría RI, Souza V, Young JP, Dávila G, González V: Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations. Appl Environ Microbiol 2010, 76:6504-6513.
- [64]Servín-Garcidueñas LE, Rogel MA, Ormeño-Orrillo E, Delgado-Salinas A, Martínez-Romero J, Sánchez F, Martínez-Romero E: Genome sequence of Rhizobium sp. strain CCGE510, a symbiont isolated from nodules of the endangered wild bean Phaseolus albescens. J Bacteriol 2012, 194:6310-6311.
- [65]Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martínez-Romero E: Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 2001, 67:3264-3268.
- [66]Amarger N, Macheret V, Laguerre G: Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 1997, 47:996-1006.
- [67]He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C: Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003, 185:809-822.
- [68]Zhang L, Murphy PJ, Kerr A, Tate ME: Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 1993, 362:446-448.
- [69]Piper KR, Beck von Bodman S, Farrand SK: Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 1993, 362:448-450.
- [70]Garcillán-Barcia MP, De la Cruz F: Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 2008, 60:1-18.
- [71]Pistorio M, Giusti MA, Del Papa MF, Draghi WO, Lozano MJ, Tejerizo GT, Lagares A: Conjugal properties of the Sinorhizobium meliloti plasmid mobilome. FEMS Microbiol Ecol 2008, 65:372-382.
- [72]Álvarez-Martínez CE, Christie PJ: Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009, 73:775-808.
- [73]Van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ: CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 2009, 34:401-407.
- [74]Nosil P, Funk DJ, Ortiz-Barrientos D: Divergent selection and heterogeneous genomic divergence. Mol Ecol 2009, 18:375-402.
- [75]Mavingui P, Flores M, Guo X, Dávila G, Perret X, Broughton WJ, Palacios R: Dynamics of genome architecture in Rhizobium sp. strain NGR234. J Bacteriol 2002, 184:171-176.
- [76]Morton ER, Merritt PM, Bever JD, Fuqua C: Large deletions in the pAtC58 megaplasmid of Agrobacterium tumefaciens can confer reduced carriage cost and increased expression of virulence genes. Genome Biol Evol 2013, 5(7):1353-1364.