期刊论文详细信息
BMC Microbiology
Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities
Yves Nys2  Sophie Réhault-Godbert2  Nicolas Guyot2  Emmanuelle Helloin1  Larbi Bedrani2 
[1] UMR1282, Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly, France;UR83 Recherches Avicoles, Institut National de la Recherche Agronomique, Nouzilly, France
关键词: Antimicrobial protein;    Innate immunity;    Germ free;    Egg;    Chicken;   
Others  :  1143649
DOI  :  10.1186/1471-2180-13-128
 received in 2012-12-20, accepted in 2013-05-28,  发布年份 2013
PDF
【 摘 要 】

Background

Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens.

Results

The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1β, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1β, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed.

Conclusions

Altogether, these data revealed that the degree of environmental microbial exposure of the hen moderately stimulated the egg innate defence, by reinforcing some specific antimicrobial activities to protect the embryo and to insure hygienic quality of table eggs.

【 授权许可】

   
2013 Bedrani et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329164609537.pdf 858KB PDF download
Figure 3. 104KB Image download
Figure 2. 90KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]De Reu K, Grijspeerdt K, Messens W, Heyndrickx A, Uyttendaele M, Debevere J, Herman L: Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. Int J Food Microbiol 2006, 112(3):253-260.
  • [2]Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Gast R, Humphrey TJ, Van Immerseel F: Mechanisms of egg contamination by salmonella enteritidis. FEMS Microbiol Rev 2009, 33(4):718-738.
  • [3]Rose ME, Orlans E, Buttress N: Immunoglobulin classes in hens Egg - their segregation in yolk and white. Eur J Immunol 1974, 4(7):521-523.
  • [4]Rehault-Godbert S, Herve-Grepinet V, Gautron J, Cabau C, Nys Y, Hincke M: Molecules involved in chemical defence of the chicken egg. In Improving the safety and quality of eggs and egg products vol. Egg chemistry, production and consumption. Edited by Nys Y, Bain M, Van Immerseel F. Philadelphia: Woodhead Publishing; 2011:183-208.
  • [5]Shawkey MD, Kosciuch KL, Liu M, Rohwer FC, Loos ER, Wang JM, Beissinger SR: Do birds differentially distribute antimicrobial proteins within clutches of eggs? Behavioral Ecology 2008, 19(4):920-927.
  • [6]Schafer A, Drewes W, Schwagele F: Effect of storage temperature and time on egg white protein. Nahrung-Food 1999, 43(2):86-89.
  • [7]van Dijk A, Veldhuizen EJA, Haagsman HP: Avian defensins. Vet Immunol Immunopathol 2008, 124(1–2):1-18.
  • [8]Sellier N, Vidal ML, Baron F, Michel J, Gautron J, Protais M, Beaumont C, Gautier M, Nys Y: Estimations of repeatability and heritability of egg albumen antimicrobial activity and of lysozyme and ovotransferrin concentrations. Br Poult Sci 2007, 48:559-566.
  • [9]Swierczewska E, Skiba T, Sokolowska A, Noworyta-Glowacka J, Kopec W, Koeniowska M, Bobak L: Egg white biologically active proteins activity in relation to laying hen’s age. Golden Tulip Parkhotel Doorwerth, Doorwerth, Netherlands: Proceedings of the XVII European Symposium on the Quality of Poultry Meat and XI European Symposium on the Quality of Eggs and Egg Products; 2005:69-72.
  • [10]Swierczewska E, Niemiec J, Noworyta-Glowacka J: A note on the effect of immunostimulation of laying hens on the lysozyme activity in egg white. Anim Sci Pap Rep 2003, 21(1):63-68.
  • [11]Hamal KR, Burgess SC, Pevzner IY, Erf GF: Maternal antibody transfer from dams to their egg yolks, egg whites, and chicks in meat lines of chickens. Poult Sci 2006, 85(8):1364-1372.
  • [12]De Reu K, Grijspeerdt K, Heyndrickx M, Zoons J, De Baere K, Uyttendaele M, Debevere J, Herman L: Bacterial eggshell contamination in conventional cages, furnished cages and aviary housing systems for laying hens. Br Poult Sci 2005, 46(2):149-155.
  • [13]Vucemilo M, Vinkovic B, Matkovic K, Stokovic I, Jaksic S, Radovic S, Granic K, Stubican D: The influence of housing systems on the air quality and bacterial eggshell contamination of table eggs. Czech J Anim Sci 2010, 55(6):243-249.
  • [14]De Reu K, Messens W, Heyndrickx M, Rodenburg TB, Uyttendaele M, Herman L: Bacterial contamination of table eggs and the influence of housing systems. World Poultry Sci J 2008, 64(1):5-19.
  • [15]Protais J, Queguiner S, Boscher E, Piquet JC, Nagard B, Salvat G: Effect of housing systems on the bacterial flora of egg shells. Br Poult Sci 2003, 44(5):788-790.
  • [16]Round JL, Mazmanian SK: Inducible Foxp(3+) regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010, 107(27):12204-12209.
  • [17]Macpherson AJ, Slack E, Geuking MB, McCoy KD: The mucosal firewalls against commensal intestinal microbes. Semin Immunopathol 2009, 31(2):145-149.
  • [18]Li-Chan E, Nakai S: Biochemical basis for the properties of egg white. Critical reviews in poultry biology 1989, 2(1):21-59.
  • [19]Davison F, Magor KE, Kaspers B, Fred D, Karel AS: Structure and Evolution of Avian Immunoglobulins. In Avian Immunology. vol. 1. London: Academic Press; 2008:107-127.
  • [20]Furuse M, Okumura J: Nutritional and physiological-characteristics in germ-free chickens. Comp Biochem Physiol A Physiol 1994, 109(3):547-556.
  • [21]Billam P, LeRoith T, Pudupakam RS, Pierson FW, Duncan RB, Meng XJ: Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken. Vet Microbiol 2009, 139(3–4):253-261.
  • [22]Peng W, Si W, Yin L, Liu H, Yu S, Liu S, Wang C, Chang Y, Zhang Z, Hu S, et al.: Salmonella enteritidis ghost vaccine induces effective protection against lethal challenge in specific-pathogen-free chicks. Immunobiology 2011, 216(5):558-565.
  • [23]Hong YH, Lillehoj HS, Lillehoj EP, Lee SH: Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet Immunol Immunopathol 2006, 114(3–4):259-272.
  • [24]Gabriel I, Mallet S, Sibille P: Digestive microflora of bird: factors of variation and consequences on bird (La microflore digestive des volailles: facteurs de variation et consequences pour l’animal). INRA Productions Animales 2005, 18(5):309-322.
  • [25]Tranter HS, Board RG: The influence of incubation-temperature and Ph on the antimicrobial properties of Hen Egg-albumin. J Appl Bacteriol 1984, 56(1):53-61.
  • [26]Gong DQ, Wilson PW, Bain MM, McDade K, Kalina J, Herve-Grepinet V, Nys Y, Dunn IC: Gallin; an antimicrobial peptide member of a new avian defensin family, the ovodefensins, has been subject to recent gene duplication. BMC Immunol 2010, 11:15. BioMed Central Full Text
  • [27]Herve-Grepinet V, Rehault-Godbert S, Gautron J, Hincke M, Mine Y, Nys Y: Avian antimicrobial peptides in hen reproductive tract and egg. Turku, Finland: World Poultry Science Association, Proceedings of the 19th European Symposium on Quality of Poultry Meat, 13th European Symposium on the Quality of Eggs and Egg Products; 2009:1-13.
  • [28]Sugiarto H, Yu PL: Avian antimicrobial peptides: the defense role of beta-defensins. Biochem Biophys Res Commun 2004, 323(3):721-727.
  • [29]Mann K: The chicken egg white proteome. Proteomics 2007, 7:3558-3568.
  • [30]Mageed AMA, Isobe N, Yoshimura Y: Expression of avian beta-defensins in the oviduct and effects of lipopolysaccharide on their expression in the vagina of hens. Poult Sci 2008, 87(5):979-984.
  • [31]Yoshimura Y, Ohashii H, Subedi K, Nishibori M, Isobe N: Effects of age, egg-laying activity, and Salmonella-inoculation on the expressions of gallinacin mRNA in the vagina of the hen oviduct. J Reprod Dev 2006, 52(2):211-218.
  • [32]Baron F, Gautier M, Brule G: Factors involved in the inhibition of growth of salmonella enteritidis in liquid egg white. J Food Prot 1997, 60(11):1318-1323.
  • [33]Van Immerseel F, Gantois I, De Vylder J, Pasmans F, Haesebrouck F, Ducatelle R: Mechanisms of egg contamination by salmonella enteritidis: what are the unique properties of this serotype?. Prague, Czech Republic: XVIII European Symposium on the quality of poultry meat, XII European symposium on the quality of eggs and egg products; 2007.
  • [34]Wesierska E, Saleh Y, Trziszka T, Kopec W, Siewinski M, Korzekwa K: Antimicrobial activity of chicken egg white cystatin. World J Microbiol Biotechnol 2005, 21(1):59-64.
  • [35]Bourin M, Gautron J, Berges M, Attucci S, Le Blay G, Labas V, Nys Y, Rehault-Godbert S: Antimicrobial potential of egg yolk ovoinhibitor, a multidomain Kazal-like inhibitor of chicken egg. J Agric Food Chem 2012, 59(23):12368-12374.
  • [36]Ardelt W, Laskowski M: Turkey ovomucoid 3rd domain inhibits 8 different serine proteinases of varied specificity on the same = Leu-18-Glu-19 = reactive site. Biochemistry 1985, 24(20):5313-5320.
  • [37]Shaw L, Golonka E, Potempa J, Foster SJ: The role and regulation of the extracellular proteases of staphylococcus aureus. Microbiology-Sgm 2004, 150:217-228.
  • [38]Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Livanainen A, Sukura A, Vuorela P, Savijoki K: Alpha- and beta-casein components of host milk induce Biofilm formation in the mastitis bacterium streptococcus uberis. Vet Microbiol 2011, 149(3–4):381-389.
  • [39]Ng H, Garibaldi JA: Death of staphylococcus-aureus in liquid whole egg near Ph-8. Appl Microbiol 1975, 29(6):782-786.
  • [40]Rehault-Godbert S, Baron F, Mignon-Grasteau S, Labas V, Gautier M, Hincke MT, Nys Y: Effect of temperature and time of storage on protein stability and anti-salmonella activity of egg white. J Food Prot 2010, 73(9):1604-1612.
  • [41]Mann K: Proteomic analysis of the chicken egg vitelline membrane. Proteomics 2008, 8(11):2322-2332.
  • [42]Mann K, Mann M: The chicken egg yolk plasma and granule proteomes. Proteomics 2008, 8(1):178-191.
  • [43]Jonchere V, Rehault-Godbert S, Hennequet-Antier C, Cabau C, Sibut V, Cogburn LA, Nys Y, Gautron J: Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg. BMC Genomics 2010, 11:57. BioMed Central Full Text
  • [44]Si W, Gong J, Tsao R, Zhou T, Yu H, Poppe C, Johnson R, Du Z: Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J Appl Microbiol 2006, 100(2):296-305.
  • [45]Mytilinaios I, Salih M, Schofield HK, Lambert RJW: Growth curve prediction from optical density data. Int J Food Microbiol 2011, 154(3):169-176.
  • [46]Osserman EF, Lawlor DP: Serum and urinary lysozyme (Muramidase) in monocytic and monomyelocytic leukemia. J Exp Med 1966, 124(5):921-952.
  文献评价指标  
  下载次数:49次 浏览次数:4次