BMC Musculoskeletal Disorders | |
Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures | |
Thomas Vordemvenne1  Michael J Raschke1  Lars Matuszewski2  Martin Schulze1  Dominic Gehweiler1  René Hartensuer1  | |
[1] Department of Trauma-, Hand-, and Reconstructive Surgery, Westfälische Wilhelms-University Münster, Albert-Schweitzer-Campus 1, W1, Münster 48149, Germany;Department of Clinical Radiology, Westfälische Wilhelms-University Münster, Albert-Schweitzer-Campus 1, A1, Münster 48149, Germany | |
关键词: Spine; Burst fracture; Instrumentation; Vertebroplasty; Trauma; Osteoporosis; Biomechanics; | |
Others : 1129005 DOI : 10.1186/1471-2474-14-360 |
|
received in 2013-06-24, accepted in 2013-12-16, 发布年份 2013 | |
【 摘 要 】
Background
Treating traumatic fractures in osteoporosis is challenging. Multiple clinical treatment options are found in literature. Augmentation techniques are promising to reduce treatment-related morbidity. In recent years, there have been an increasing number of reports about extended indication for augmentation techniques. However, biomechanical evaluations of these techniques are limited.
Methods
Nine thoracolumbar osteoporotic spinal samples (4 FSU) were harvested from postmortem donors and immediately frozen. Biomechanical testing was performed by a robotic-based spine tester. Standardized incomplete burst fractures were created by a combination of osteotomy-like weakening and high velocity compression using a hydraulic material testing apparatus. Biomechanical measurements were performed on specimens in the following conditions: 1) intact, 2) fractured, 3) bisegmental instrumented, 4) bisegmental instrumented with vertebroplasty (hybrid augmentation, HA) and 5) stand-alone vertebroplasty (VP). The range of motion (RoM), neutral zone (NZ), elastic zone (EZ) and stiffness parameters were determined. Statistical evaluation was performed using Wilcoxon signed-rank test for paired samples (p = 0.05).
Results
Significant increases in RoM and in the NZ and EZ (p < 0.005) were observed after fracture production. The RoM was decreased significantly by applying the dorsal bisegmental instrumentation to the fractured specimens (p < 0.005). VP reduced fractured RoM in flexion but was still increased significantly (p < 0.05) above intact kinematic values. NZ stiffness (p < 0.05) and EZ stiffness (p < 0.01) was increased by VP but remained lower than prefracture values. The combination of short segment instrumentation and vertebroplasty (HA) showed no significant changes in RoM and stiffness in NZ in comparison to the instrumented group, except for significant increase of EZ stiffness in flexion (p < 0.05).
Conclusions
Stand-alone vertebroplasty (VP) showed some degree of support of the anterior column but was accompanied by persistent traumatic instability. Therefore, we would advocate against using VP as a stand-alone procedure in traumatic fractures.
HA did not increase primary stability of short segment instrumentation. Some additional support of anterior column and changes of kinematic values of the EZ may lead one to suppose that additive augmentation may reduce the load of dorsal implants and possibly reduce the risk of implant failure.
【 授权许可】
2013 Hartensuer et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150225170132236.pdf | 1565KB | download | |
Figure 6. | 70KB | Image | download |
Figure 5. | 66KB | Image | download |
Figure 4. | 71KB | Image | download |
Figure 6. | 29KB | Image | download |
Figure 2. | 48KB | Image | download |
Figure 1. | 115KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 6.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Rajasekaran S: Thoracolumbar burst fractures without neurological deficit: the role for conservative treatment. Eur Spine J 2010, 19(Suppl 1):S40-S47.
- [2]Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A: Operative treatment of 733 patients with acute thoracolumbar spinal injuries: comprehensive results from the second, prospective, internet-based multicenter study of the Spine Study Group of the German Association of Trauma Surgery. Eur Spine J 2010, 19(10):1657-1676.
- [3]Vaccaro AR, Lim MR, Hurlbert RJ, Lehman RA Jr, Harrop J, Fisher DC, Dvorak M, Anderson DG, Zeiller SC, Lee JY, et al.: Surgical decision making for unstable thoracolumbar spine injuries: results of a consensus panel review by the Spine Trauma Study Group. J Spinal Disord Tech 2006, 19(1):1-10.
- [4]McCall T, Dailey AT: Management of thoracolumbar compression fractures. In Spine and Spinal Cord Trauma: Evidence-Based Management. Edited by Vaccaro A, Fehlings MG, Dvorak M. New York: Thieme; 2010.
- [5]Oner FC, Wood KB, Smith JS, Shaffrey CI: Therapeutic decision making in thoracolumbar spine trauma. Spine (Phila Pa 1976) 2010, 35(21 Suppl):S235-S244.
- [6]Hu S: Internal Fixation in the Osteoporotic Spine. Spine (Phila Pa 1976) 1997, 22(24 Suppl):S43-S48.
- [7]Mermelstein LE, McLain RF, Yerby SA: Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study. Spine (Phila Pa 1976) 1998, 23(6):664-670.
- [8]Uchida K, Kobayashi S, Matsuzaki M, Nakajima H, Shimada S, Yayama T, Sato R, Baba H: Anterior versus posterior surgery for osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine. Eur Spine J 2006, 15(12):1759-1767.
- [9]Hartmann F, Gercek E, Leiner L, Rommens PM: Kyphoplasty as an alternative treatment of traumatic thoracolumbar burst fractures Magerl type A3. Injury 2012, 43(4):409-415.
- [10]Gan M, Yang H, Zhou F, Zou J, Wang G, Mei X, Qian Z, Chen L: Kyphoplasty for the treatment of painful osteoporotic thoracolumbar burst fractures. Orthopedics 2010, 33(2):88-92.
- [11]Li CH, Chang MC, Liu CL, Chen TS: Osteoporotic burst fracture with spinal canal compromise treated with percutaneous vertebroplasty. Clin Neurol Neurosurg 2010, 112(8):678-681.
- [12]Lu WW, Cheung KM, Li YW, Luk KD, Holmes AD, Zhu QA, Leong JC: Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 2001, 26(24):2684-2690.
- [13]Shin JJ, Chin DK, Yoon YS: Percutaneous vertebroplasty for the treatment of osteoporotic burst fractures. Acta Neurochir (Wien) 2009, 151(2):141-148.
- [14]Oner FC, Dhert WJ, Verlaan JJ: Less invasive anterior column reconstruction in thoracolumbar fractures. Injury 2005, 36(Suppl 2):B82-B89.
- [15]Afzal S, Akbar S, Dhar SA: Short segment pedicle screw instrumentation and augmentation vertebroplasty in lumbar burst fractures: an experience. Eur Spine J 2008, 17(3):336-341.
- [16]Fuentes S, Blondel B, Metellus P, Gaudart J, Adetchessi T, Dufour H: Percutaneous kyphoplasty and pedicle screw fixation for the management of thoraco-lumbar burst fractures. Eur Spine J 2010, 19(8):1281-1287.
- [17]Korovessis P, Hadjipavlou A, Repantis T: Minimal invasive short posterior instrumentation plus balloon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. Spine 2008, 33(6):658-667.
- [18]Marco RA, Kushwaha VP: Thoracolumbar burst fractures treated with posterior decompression and pedicle screw instrumentation supplemented with balloon-assisted vertebroplasty and calcium phosphate reconstruction. J Bone Joint Surg Am 2009, 91(1):20-28.
- [19]Pflugmacher R, Agarwal A, Kandziora FCKK: Balloon kyphoplasty combined with posterior instrumentation for the treatment of burst fractures of the spine–1-year results. J Orthop Trauma 2009, 23(2):126-131.
- [20]Verlaan JJ, Dhert WJ, Verbout AJ, Oner FC: Balloon vertebroplasty in combination with pedicle screw instrumentation: a novel technique to treat thoracic and lumbar burst fractures. Spine 2005, 30(3):E73-E79.
- [21]Uchida K, Nakajima H, Yayama T, Miyazaki T, Hirai T, Kobayashi S, Chen K, Guerrero AR, Baba H: Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine 2010, 13(5):612-621.
- [22]Hartensuer R, Gehweiler D, Gasch A, Schanz S, Schulze M, Matuszewski L, Langer M, Raschke MJ, Vordemvenne T: Experimentally induced incomplete burst fractures - a novel technique for calf and human specimens. BMC musculoskelet disord 2012, 13(1):45. BioMed Central Full Text
- [23]Felsenberg D: Quantitative determination of bone mineral content by double-spectrum computer tomography (in German). Radiologe 1988, 28(4):166-172.
- [24]Cotterill P, Kostuik J, Wilson J, Fernie G, Maki B: Production of a reproducible spinal burst fracture for use in biomechanical testing. J orthop res off publ Orthop Res Soc 1987, 5(3):462-465.
- [25]Fredrickson BE, Edwards WT, Rauschning W, Bayley JC, Yuan HA: Vertebral burst fractures: an experimental, morphologic, and radiographic study. Spine 1992, 17(9):1012-1021.
- [26]Kifune M, Panjabi MM, Arand M, Liu W: Fracture pattern and instability of thoracolumbar injuries. Eur Spine J 1995, 4(2):98-103.
- [27]Shono Y, McAfee PC, Cunningham BW: Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine 1994, 19(15):1711-1722.
- [28]Panjabi MM, Oxland TR, Kifune M, Arand M, Wen L, Chen A: Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation. Spine 1995, 20(10):1122-1127.
- [29]Schulze M, Hartensuer R, Gehweiler D, Hölscher U, Raschke MJ, Vordemvenne T: Evaluation of a robot-assisted testing system for multisegmental spine specimens. J Biomech 2012, 45(8):1457-1462.
- [30]Ananthakrishnan D, Berven S, Deviren V, Cheng K, Lotz JC, Xu Z, Puttlitz CM: The effect on anterior column loading due to different vertebral augmentation techniques. Clin biomech (Bristol, Avon) 2005, 20(1):25-31.
- [31]Wilke HJ, Wenger K, Claes L: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 1998, 7(2):148-154.
- [32]Thomas KC, Bailey CS, Dvorak MF, Kwon B, Fisher C: Comparison of operative and nonoperative treatment for thoracolumbar burst fractures in patients without neurological deficit: a systematic review. J Neurosurg Spine 2006, 4(5):351-358.
- [33]Chapman JR: Classifications in spine: a tectonic shift. spine j off j North Am Spine Soc 2009, 9(9):776-777.
- [34]Ponnusamy KE, Iyer S, Gupta G, Khanna AJ: Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J 2011, 11(1):54-63.
- [35]Oner FC, Verlaan JJ, Verbout AJ, Dhert WJ: Cement augmentation techniques in traumatic thoracolumbar spine fractures. Spine 2006, 31(11 Suppl):S89-S95.
- [36]Kruger A, Zettl R, Ziring E, Mann D, Schnabel M, Ruchholtz S: Kyphoplasty for the treatment of incomplete osteoporotic burst fractures. Eur Spine J 2010, 19(6):893-900.
- [37]Huet H, Cabal P, Gadan R, Borha A, Emery E: Burst-fractures and cementoplasty. J Neuroradiol 2005, 32(1):33-41.
- [38]Liu CL, Lai PL, Jung SM, Liao CC: Thoracic ossified meningioma and osteoporotic burst fracture: treatment with combined vertebroplasty and laminectomy without instrumentation: case report. J Neurosurg Spine 2006, 4(3):256-259.
- [39]Wilke H-J, Mehnert U, Claes LE, Bierschneider MM, Jaksche H, Boszczyk BM: Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine 2006, 31(25):2934-2941.
- [40]Cho DY, Lee WY, Sheu PC: Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation. Neurosurgery 2003, 53(6):1354-1360.