期刊论文详细信息
BMC Genetics
Genetic loci for serum magnesium among African-Americans and gene-environment interaction at MUC1 and TRPM6 in European-Americans: the Atherosclerosis Risk in Communities (ARIC) study
Wen Hong Linda Kao3  Josef Coresh5  Eric Boerwinkle3  Christopher A Friedrich4  Alan B Zonderman6  Michele K Evans6  Mike A Nalls6  Salman M Tajuddin6  Nisa M Maruthur7  Aaron R Folsom1  Anna Köttgen2  Adrienne Tin5 
[1] University of Minnesota School of Public Health, Minneapolis, MN, USA;University Medical Center Freiburg, Freiburg, Germany;University of Texas School of Public Health, Houston, TX, USA;University of Mississippi Medical Center, Jackson, MS, USA;Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA;National Institute on Aging, National Institutes of Health, Bethesda, MD, USA;Johns Hopkins University School of Medicine, Baltimore, MD, USA
关键词: TRPM6;    MUC1;    Serum magnesium;    Gene-environment interaction;   
Others  :  1216019
DOI  :  10.1186/s12863-015-0219-7
 received in 2014-08-06, accepted in 2015-05-15,  发布年份 2015
PDF
【 摘 要 】

Background

Low serum magnesium levels have been associated with multiple chronic diseases. The regulation of serum magnesium homeostasis is not well understood. A previous genome-wide association study (GWAS) of European ancestry (EA) populations identified nine loci for serum magnesium. No such study has been conducted in African-Americans, nor has there been an evaluation of the interaction of magnesium-associated SNPs with environmental factors. The goals of this study were to identify genetic loci associated with serum magnesium in an African-American (AA) population using both genome-wide and candidate region interrogation approaches and to evaluate gene-environment interaction for the magnesium-associated variants in both EA and AA populations. We conducted a GWAS of serum magnesium in 2737 AA participants of the Atherosclerosis Risk in Communities (ARIC) Study and interrogated the regions of the nine published candidate loci in these results. Literature search identified the influence of progesterone on MUC1 expression and insulin on TRPM6 expression.

Results

The GWAS approach in African-American participants identified a locus near MUC1 as genome-wide significant (rs2974937, beta = −0.013, p = 6.1x10−9). The candidate region interrogation approach identified two of the nine loci previously discovered in EA populations as containing SNPs that were significantly associated in African-American participants (SHROOM3 and TRPM6). The index variants at these three loci together explained 2.8 % of the variance in serum magnesium concentration in ARIC African-American participants. On the test of gene-environment interaction in ARIC EA participants, the index variant at MUC1 had 2.5 times stronger association in postmenopausal women with progestin use (beta = −0.028, p = 7.3x10−5) than in those without any hormone use (beta = −0.011, p = 7.0x10−8, p for interaction 0.03). At TRPM6, the index variant had 1.6 times stronger association in those with lower fasting insulin levels (<80pmol/L: beta = −0.013, p = 1.6x10−7; ≥80pmol/L: beta = −0.008, p = 1.8x10−2, p for interaction 0.03).

Conclusions

We identified three loci that explained 2.8 % of the variance in serum magnesium concentration in ARIC African-American participants. Following-up on functional studies of gene expression identified gene-environment interactions between progestin use and MUC1 and between insulin and TRPM6 on serum magnesium concentration in ARIC European-American participants. These results extend our understanding of the metabolism of serum magnesium.

【 授权许可】

   
2015 Tin et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150628010934659.pdf 721KB PDF download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Del Gobbo LC, Imamura F, Wu JH, de Oliveira Otto MC, Chiuve SE, Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2013; 98(1):160-73.
  • [2]Peacock JM, Folsom AR, Arnett DK, Eckfeldt JH, Szklo M. Relationship of serum and dietary magnesium to incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol. 1999; 9(3):159-65.
  • [3]Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL et al.. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis risk in communities study. Arch Intern Med. 1999; 159(18):2151-9.
  • [4]Tin A, Grams ME, Maruthur NM, Astor BC, Couper D, Mosley TH et al.. Coresh J. Kao WH, Results from the Atherosclerosis Risk in Communities study suggest that low serum magnesium is associated with incident kidney disease. Kidney Int; 2014.
  • [5]Hunter DJ, Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV et al.. Genetic contribution to renal function and electrolyte balance: a twin study. Clin Sci (Lond). 2002; 103(3):259-65.
  • [6]Meyer TE, Verwoert GC, Hwang SJ, Glazer NL, Smith AV, van Rooij FJ, Ehret GB, Boerwinkle E, Felix JF, Leak TS et al.: Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet 2010, 6(8).
  • [7]Resnick LM, Bardicef O, Altura BT, Alderman MH, Altura BM. Serum ionized magnesium: relation to blood pressure and racial factors. Am J Hypertens. 1997; 10(12 Pt 1):1420-4.
  • [8]Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al.. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007; 449(7164):851-61.
  • [9]Nair AV, Hocher B, Verkaart S, van Zeeland F, Pfab T, Slowinski T et al.. Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci U S A. 2012; 109(28):11324-9.
  • [10]McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ et al.. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest. 2007; 117(8):2313-24.
  • [11]Leroy X, Copin MC, Devisme L, Buisine MP, Aubert JP, Gosselin B et al.. Expression of human mucin genes in normal kidney and renal cell carcinoma. Histopathology. 2002; 40(5):450-7.
  • [12]Meseguer M, Aplin JD, Caballero-Campo P, O’Connor JE, Martin JC, Remohi J et al.. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod. 2001; 64(2):590-601.
  • [13]Horne AW, Lalani EN, Margara RA, White JO. The effects of sex steroid hormones and interleukin-1-beta on MUC1 expression in endometrial epithelial cell lines. Reproduction (Cambridge, England). 2006; 131(4):733-42.
  • [14]Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al.. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012; 22(9):1790-7.
  • [15]The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45(6):580-5.
  • [16]Schlingmann KP, Gudermann T. A critical role of TRPM channel-kinase for human magnesium transport. J Physiol. 2005; 566(Pt 2):301-8.
  • [17]de Baaij JH, Groot Koerkamp MJ, Lavrijsen M, van Zeeland F, Meijer H, Holstege FC et al.. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling. Am J Physiol Renal Physiol. 2013; 305(11):F1563-73.
  • [18]The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989; 129(4):687-702.
  • [19]Coburn JW, Popovtzer MM, Massry SG, Kleeman CR. The physicochemical state and renal handling of divalent ions in chronic renal failure. Arch Intern Med. 1969; 124(3):302-11.
  • [20]Evans MK, Lepkowski JM, Powe NR, LaVeist T, Kuczmarski MF, Zonderman AB. Healthy aging in neighborhoods of diversity across the life span (HANDLS): overcoming barriers to implementing a longitudinal, epidemiologic, urban study of health, race, and socioeconomic status. Ethn Dis. 2010; 20(3):267-75.
  • [21]Gindler EM, Heth DA. Colorimetric determination with bound “calmagite” of magnesium in human blood serum (abstract). Clin Chem. 1971; 17:662.
  • [22]Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al.. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150(9):604-12.
  • [23]Eckfeldt JH, Chambless LE, Shen YL. Short-term, within-person variability in clinical chemistry test results experience from the Atherosclerosis risk in communities study. Arch Pathol Lab Med. 1994; 118(5):496-500.
  • [24]Liu CT, Garnaas MK, Tin A, Kottgen A, Franceschini N, Peralta CA et al.. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet. 2011; 7(9): Article ID e1002264
  • [25]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559-75.
  • [26]Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26(17):2190-1.
  • [27]Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al.. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012; 337(6099):1190-5.
  • [28]Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012; 40(Database issue):D930-4.
  • [29]Ascaso JF, Pardo S, Real JT, Lorente RI, Priego A, Carmena R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care. 2003; 26(12):3320-5.
  • [30]McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA et al.. Diagnosing insulin resistance in the general population. Diabetes Care. 2001; 24(3):460-4.
  • [31]Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ et al.. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010; 42(7):570-5.
  • [32]Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010; 11(7):499-511.
  文献评价指标  
  下载次数:19次 浏览次数:12次