期刊论文详细信息
BMC Evolutionary Biology
Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae
Qing-Feng Wang1  Robert Wahiti Gituru2  Jin-Ming Chen1  Ling-Yun Chen3 
[1] Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, P. R. China;Botany Department, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya;Graduate University of Chinese Academy of Sciences, 100049 Beijing, China
关键词: Morphological character evolution;    Vicariance;    Dispersal;    Historical biogeography;    Phylogeny;    Hydrocharitaceae;   
Others  :  1141385
DOI  :  10.1186/1471-2148-12-30
 received in 2012-01-04, accepted in 2012-03-10,  发布年份 2012
PDF
【 摘 要 】

Background

Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters.

Results

Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandraand Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states.

Conclusions

Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation for the intercontinental distribution. We have also provided valuable information for understanding the evolution of breeding system and leaf phenotype in aquatic monocots.

【 授权许可】

   
2012 Chen et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327034507208.pdf 1887KB PDF download
Figure 3. 69KB Image download
Figure 2. 147KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Les DH, Moody ML, Soros CL: A reappraisal of phylogenetic relationships in the monocotyledon family Hydrocharitaceae (Alismatidae). Aliso 2006, 22:211-230.
  • [2]Les DH, Cleland MA, Waycott M: Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 1997, 22:443-463.
  • [3]He JB: Systematic Botanical and Biosystematic Studies on Ottelia in China. 1st edition. Wuhan: Wuhan University Press; 1991.
  • [4]Chambers PA, Lacoul P, Murphy KJ, Thomaz SM: Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 2008, 595:9-26.
  • [5]Les DH, Moody ML, Jacobs SWL: Phylogeny and systematics of Aponogeton (Aponogetonaceae): The Australian species. Syst Bot 2005, 30:503-519.
  • [6]Les DH, Haynes RR: Systematics of subclass Alismatidae: a synthesis of approaches. In Monocotyledons: Systematics and Evolution. Edited by Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ. Kew: Royal Botanic Gardens; 1995:353-377.
  • [7]Lehtonen S, Myllys L: Cladistic analysis of Echinodorus (Alismataceae): simultaneous analysis of molecular and morphological data. Cladistics 2008, 24:218-239.
  • [8]Tanaka N, Setoguchi H, Murata J: Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J Plant Res 1997, 110:329-337.
  • [9]Petersen G, Seberg O, Davis JI, Stevenson DW: RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. Taxon 2006, 55:871-886.
  • [10]Cuenca A, Petersen G, Seberg O, Davis JI, Stevenson DW: Are substitution rates and RNA editing correlated? BMC Evol Biol 2010, 10:349.
  • [11]Janssen T, Bremer K: The age of major monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 2004, 146:385-398.
  • [12]Ramirez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE: Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 2007, 448:1042-1045.
  • [13]Kato Y, Aioi K, Omori Y, Takahata N, Satta Y: Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide sequences: Implications for the origin and diversification of seagrasses in Japanese waters. Genes Genet Syst 2003, 78:329-342.
  • [14]Magallon S, Castillo A: Angiosperm Diversification through Time. Am J Bot 2009, 96:349-365.
  • [15]He JB, Sun XZ, Zhong Y, Huang DS: Cladistic studies on the genus Ottelia (Hydrocharitaceae). J Wuhan Bot Res 1991, 9:121-129.
  • [16]Kvacek Z: Bilina: a window on Early Miocene marshland environments. Rev Palaeobot Palynol 1998, 101:111-123.
  • [17]Stockey RA: The fossil record of basal monocots. Aliso 2006, 22:91-106.
  • [18]Daghlian CP: A review of the fossil record of monocotyledons. Bot Rev 1981, 47:517-555.
  • [19]Sille NP, Collinson ME, Kucera M, Hooker JJ: Morphological evolution of Stratiotes through the Paleogene in England: An example of microevolution in flowering plants. Palaios 2006, 21:272-288.
  • [20]Cook CDK: Hydrocharitaceae. In Flowering Plants, Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Edited by Kubitzki K, Huber H. Berlin: Springer; 1998:234-247.
  • [21]Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E: Biogeography of discontinuously distributed hydrophytes: A molecular appraisal of intercontinental disjunctions. Int J Plant Sci 2003, 164:917-932.
  • [22]Emadzade K, Horandl E: Northern Hemisphere origin, transoceanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic. J Biogeogr 2011, 38:517-530.
  • [23]Emadzade K, Gehrke B, Linder HP, Horandl E: The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones. Mol Phylogenet Evol 2011, 58:4-21.
  • [24]Raven PH, Axelrod DI: Angiosperm biogeography and past continental movements. Ann Mo Bot Gard 1974, 61:539-673.
  • [25]Haynes RR, Holm-Nielsen LB: The Limnocharitaceae. In Flora Neotropica. Volume 56. New York: New York Botanical Garden Press; 1992::1-32.
  • [26]Chen JK: Systematic and Evolutionary Botanical Studies on Chinese Sagittaria. 1st edition. Wuhan: Wuhan University Press; 1989.
  • [27]Barrett SCH: The evolution of plant sexual diversity. Nat Rev Genet 2002, 3:274-284.
  • [28]Sculthorpe CD: The Biology of Aquatic Vascular Plants. London: Edward Arnold; 1967.
  • [29]Sanders KL, Mumpuni , Hamidy A, Head JJ, Gower DJ: Phylogeny and divergence times of filesnakes (Acrochordus): Inferences from morphology, fossils and three molecular loci. Mol Phylogenet Evol 2010, 56:857-867.
  • [30]Sanders KL, Lee MSY: Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol Lett 2007, 3:275-279.
  • [31]Morse JC: [http://entweb.clemson.edu/database/trichopt] webciteTrichoptera World Checklist. 2011.
  • [32]Feng CM, Manchester SR, Xiang QY: Phylogeny and biogeography of Alangiaceae (Cornales) inferred from DNA sequences, morphology, and fossils. Mol Phylogenet Evol 2009, 51:201-214.
  • [33]Howarth DG, Gustafsson MHG, Baum DA, Motley TJ: Phylogenetics of the genus Scaevola (Goodeniaceae): implication for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands. Am J Bot 2003, 90:915-923.
  • [34]Schaefer H, Heibl C, Renner SS: Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc B Biol Sci 2009, 276:843-851.
  • [35]Cronn R, Wendel JF: Cryptic trysts, genomic mergers, and plant speciation. New Phytol 2004, 161:133-142.
  • [36]Cook CDK, Urmikonig K: A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of Eurasia, Australasia and America. Aquat Bot 1984, 20:131-177.
  • [37]McGowen MR, Spaulding M, Gatesy J: Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 2009, 53:891-906.
  • [38]Wiens JJ, Moen DS: Missing data and the accuracy of Bayesian phylogenetics. J Syst Evol 2008, 46:307-314.
  • [39]Thomson RC, Shaffer HB: Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol 2010, 59:42-58.
  • [40]Li XX, Zhou ZK: Phylogenetic studies of the core Alismatales inferred from morphology and rbcL sequences. Prog Nat Sci 2009, 19:931-945.
  • [41]Chen JM, Chen D, Gituru WR, Wang QF, Guo YH: Evolution of apocarpy in Alismatidae using phylogenetic evidence from chloroplast rbcL gene sequence data. Bot Bull Acad Sin 2004, 45:33-40.
  • [42]Cook CDK, Urmikonig K: A Revision of the Genus Stratiotes (Hydrocharitaceae). Aquat Bot 1983, 16:213-249.
  • [43]Hiesel R, von Haeseler A, Brennicke A: Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc Natl Acad Sci USA 1994, 91:634-638.
  • [44]Mai DH, Walther H: Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR). Abhand-lungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 1978, 28:1-101.
  • [45]Mai DH, Walther H: Die obereozänen Floren des Weisselsterbeckens und seiner Randgebiete. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 1985, 33:1-260.
  • [46]Markwick PJ: [http://www.palaeogeography.net] webcitePaul's Palaeo Pages. 2011.
  • [47]Okada H: Mateer NJ: Cretaceous Environments of Asia. Netherlands: Elsevier Science B.V; 2000.
  • [48]Takhtajan A, Vakrameev V: Radchenko GP: Fundamentals of paleontology: Gymnosperms and angiosperm. Moscow, Russia: Akadamiia Nauk S.S.S.R; 1963.
  • [49]Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA: Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol Phylogenet Evol 2010, 54:1-9.
  • [50]Stoffberg S: Rhinolophus capensis (Chiroptera: Rhinolophidae). Mamm Species 2008, 810:1-4.
  • [51]Lomolino MV, Riddle BR, Brown JH: Biogeography. 3rd edition. Sunderland: Sinauer Associates; 2006.
  • [52]Davis CC, Bell CD, Mathews S, Donoghue MJ: Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc Natl Acad Sci USA 2002, 99:6833-6837.
  • [53]Renner S: Plant dispersal across the tropical Atlantic by wind and sea currents. Int J Plant Sci 2004, 165:23-33.
  • [54]Bush ABG: Numerical simulation of the Cretaceous Tethys circumglobal current. Science 1997, 275:807-810.
  • [55]Gordon WA: Marine life and ocean surface currents in the Cretaceous. J Geol 1973, 81:269-284.
  • [56]Tiffney BH, Manchester SR: The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere tertiary. Int J Plant Sci 2001, 162:S3-S17.
  • [57]Heaney LR: Conservation biogeography in oceanic archipelagoes. In Frontiers of Biogeography: New directions in the Geography of Nature. Edited by Lomolino MV. Sunderland: Sinauer Associates; 2004:345-360.
  • [58]Van Welzen PC, Slik JWF, Alahuhta J: Plant distribution patterns and plate tectonics in Malesia. Biol Skr 2005, 55:199-217.
  • [59]Tiffney BH: The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor 1985, 66:243-273.
  • [60]Denk T, Grimsson F, Zetter R: Episodic migration of oaks to Iceland: Evidence for a North Atlantic "land bridge" in the latest Miocene. Am J Bot 2010, 97:276-287.
  • [61]Mao K, Hao G, Liu J, Adams RP, Milne RI: Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytol 2010, 188:254-272.
  • [62]Marincovich L, Gladenkov AY: Evidence for an early opening of the Bering Strait. Nature 1999, 397:149-151.
  • [63]Buerki S, Forest F, Alvarez N, Nylander JAA, Arrigo N, Sanmartin I: An evaluation of new parsimony-based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae. J Biogeogr 2011, 38:531-550.
  • [64]Bartish IV, Antonelli A, Richardson JE, Swenson U: Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr 2011, 38:177-190.
  • [65]Weeks A, Daly DC, Simpson BB: The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol Phylogenet Evol 2005, 35:85-101.
  • [66]Col J: [http:/ / www.enchantedlearning.com/ subjects/ dinosaurs/ mesozoic/ cretaceous/ lc.shtml] webciteEnchanted Learning. 2011.
  • [67]Wang QF, Guo YH, Haynes RR, Hellquist CB: Hydrocharitaceae. In Flora of China. Volume 23. Edited by Wu ZY, Peter HR. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press; 2010::91-102.
  • [68]Haller WT, Sutton DL: Community structure and competition between Hydrilla and Vallisneria. Hyacinth Control J 1975, 13:48-50.
  • [69]Madeira PT, Coetzee JA, Center TD, White EE, Tipping PW: The origin of Hydrilla verticillata recently discovered at a South African dam. Aquat Bot 2007, 87:176-180.
  • [70]Cook CDK, Luond R: A revision of the genus Hydrilla (Hydrocharitaceae). Aquat Bot 1982, 13:485-504.
  • [71]Overholt WA, Copeland R, Williams D, Cuda J, Nzigidahera B, Nkubaye E, Wanda F, Gidudu B: Exploration for natural enemies of Hydrilla verticillata in East/Central Africa and genetic characterization of worldwide populations. In Report to the Florida Department of Environmental Protection. Tallahassee: Bureau of Invasive Plant Management; 2008.
  • [72]Short F, Carruthers T, Dennison W, Waycott M: Global seagrass distribution and diversity: A bioregional model. J Exp Mar Biol Ecol 2007, 350:3-20.
  • [73]Mukai H: Biogeography of the tropical seagrasses in the western Pacific. Mar Freshw Res 1993, 44:1-17.
  • [74]Benzie JAH: Genetic structure of marine organisms and SE Asian biogeography. In Biogeography and geological Evolution of SE Asia. Edited by Hall R, Holloway JD. Netherlands: Backhuys Publishers; 1998:197-209.
  • [75]McCoy ED, Heck KL: Biogeography of corals, seagrasses, and mangroves; an alternative to the center of origin concept. Syst Biol 1976, 25:201-210.
  • [76]Den HC: The sea-grasses of the world. Amsterdam: North Holland Publishing Co; 1970.
  • [77]Kuo J, Kanamoto Z, Iizumi H, Aioi K, Mukai H: Seagrasses from the Nansei Islands, Southern Japanese Archipelago: species composition, distribution and biogeography. Mar Ecol 2006, 27:290-298.
  • [78]Waycott M, Freshwater DW, York RA, Calladine A, Kenworthy WJ: Evolutionary trends in the seagrass genus Halophila (thouars): Insights from molecular phylogeny. Bull Mar Sci 2002, 71:1299-1308.
  • [79]Jacobs SWL, Frank KA: Notes on Vallisneria (Hydrocharitaceae) in Australia, with descriptions of two new species. Telopea 1997, 7:111-118.
  • [80]Les DH, Jacobs SWL, Tippery NP, Chen L, Moody ML, Wilstermann-Hildebrand M: Systematics of Vallisneria (Hydrocharitaceae). Syst Bot 2008, 33:49-65.
  • [81]Delph LF: Sex allocation: evolution to and from dioecy. Curr Biol 2009, 19:R249-R251.
  • [82]Canovas FG, Mota CF, Serrao EA, Pearson GA: Driving south: a multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evol Biol 2011, 11:371. BioMed Central Full Text
  • [83]Chen JM, Robert GW, Wang QF: Evolution of aquatic life-forms in Alismatidae: Phylogenetic estimation from chloroplast rbcL gene sequence data. Isr J Plant Sci 2004, 52:323-329.
  • [84]Zurawski G, Clegg M: Evolution of higher-plant chloroplast DNA-encoded genes: Implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 1987, 38:391-418.
  • [85]Les DH, Schneider EL, Padgett DJ, Soltis PS, Soltis DE, Zanis M: Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): A synthesis of non-molecular, rbcL, matK, and 18S rDNA data. Syst Bot 1999, 24:28-46.
  • [86]Bult C, Kallersjo M, Suh Y: Amplification and sequencing of 16/18S rDNA from gel-purified total plant DNA. Plant Mol Biol Rep 1992, 10:273-284.
  • [87]Sass C, Little DP, Stevenson DW, Specht CD: DNA barcoding in the cycadales: Testing the potential of proposed barcoding markers for species identification of cycads. PLoS One 2007, 2:e1154.
  • [88]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
  • [89]Escobar JS, Scornavacca C, Cenci A, Guilhaumon C, Santoni S, Douzery EJP, Ranwez V, Glemin S, David J: Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 2011, 11:181. BioMed Central Full Text
  • [90]Geisler JH, McGowen MR, Yang G, Gatesy J: A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol Biol 2011, 11:112. BioMed Central Full Text
  • [91]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [92]Cronquist A: An integrated system of classification of flowering plants. New York: Columbia University Press; 1981.
  • [93]Nylander JAA: MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden; 2004.
  • [94]Rambaut A, Drummond AJ: Tracer v1.4. 2007. Available from http://beast.bio.ed.ac.uk/Tracer. webcite
  • [95]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [96]Drummond AJ, Ho SY, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
  • [97]Smith SA, Beaulieu JM, Donoghue MJ: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 2010, 107:5897-5902.
  • [98]Adamson EAS, Hurwood DA, Mather PB: A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration. Mol Phylogenet Evol 2010, 56:707-717.
  • [99]Popp M, Mirre V, Brochmann C: A single Mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proc Natl Acad Sci USA 2011, 108:6520-6525.
  • [100]Eiseman NJ, Mcmillan C: A new species of seagrass, Halophila johnsonii from the Atlantic coast of Florida. Aquat Bot 1980, 9:15-19.
  • [101]Johnstone IM: Papua-New-Guinea seagrasses and aspects of the biology and growth of Enhalus-acoroides (Lf) Royle. Aquat Bot 1979, 7:197-208.
  • [102]Kenworthy WJ, Wyllie-Echeverria S, Coles R, Pergent G, Pergent-Martini C: Seagrass conservation biology: An interdisciplinary science for protection of the seagrass biome. In Seagrasses: Biology, Ecology and Conservation. Edited by Larkum AWD, Orth RJ, Duarte CM. Netherlands: Springer; 2006:595-623.
  • [103]Cook CDK: Aquatic plant book. Hague: SPB Academic Publishing; 1990.
  • [104]Wingfield RA, Murphy KJ, Hollingsworth P, Gaywood MJ: The Ecology of Najas Flexilis. Scottish Natural Heritage Commissioned Report No. 017; 2004.
  • [105]Gambi MC, Barbieri F, Bianchi CN: New record of the alien seagrass Halophila stipulacea (Hydrocharitaceae) in the western Mediterranean: A further clue to changing Mediterranean Sea biogeography. JMBA2 Biodiv Rec 2009, 2:e84.
  • [106]Wang QF, Haynes RR, Hellquist CB: Alismataceae and Butomaceae. In Flora of China. Volume 23. Edited by Wu ZY, Peter HR. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press; 2010::84-90.
  • [107]Ronquist F: Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst Biol 1997, 46:195-203.
  • [108]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. [http://mesquiteproject.org] webciteVersion 2.74 2010.
  文献评价指标  
  下载次数:1次 浏览次数:3次