期刊论文详细信息
BMC Genomics
Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo
Thomas G Fazzio3  Kurtis N McCannell1  Sarah J Hainer1  Lihua J Zhu2  Poshen B Chen1 
[1] Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA;Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
关键词: Embryonic stem cells;    Nucleosome dynamics;    Chromatin accessibility;    Restriction enzyme accessibility;    RED-seq;   
Others  :  1127308
DOI  :  10.1186/1471-2164-15-1104
 received in 2014-06-02, accepted in 2014-12-10,  发布年份 2014
PDF
【 摘 要 】

Background

Differential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays.

Results

Here we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition.

Conclusions

Using an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.

【 授权许可】

   
2014 Chen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220091837361.pdf 1859KB PDF download
Figure 8. 134KB Image download
Figure 7. 127KB Image download
Figure 6. 152KB Image download
Figure 5. 156KB Image download
Figure 4. 186KB Image download
Figure 3. 133KB Image download
Figure 2. 100KB Image download
Figure 1. 151KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Luger K, Richmond TJ: DNA binding within the nucleosome core. Curr Opin Struct Biol 1998, 8:33-40.
  • [2]Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausió J: Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 2001, 276:41945-41949.
  • [3]Bao Y, Konesky K, Park Y-J, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K: Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 2004, 23:3314-3324.
  • [4]Doyen C-M, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S: Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 2006, 25:4234-4244.
  • [5]Thambirajah AA, Dryhurst D, Ishibashi T, Li A, Maffey AH, Ausió J: H2A.Z stabilizes chromatin in a way that is dependent on core histone acetylation. J Biol Chem 2006, 281:20036-20044.
  • [6]Jin C, Felsenfeld G: Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 2007, 21:1519-1529.
  • [7]Luger K, Dechassa ML, Tremethick DJ: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 2012, 13:436-447.
  • [8]Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL: A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 2013, 340:195-199.
  • [9]Li W, Nagaraja S, Delcuve GP, Hendzel MJ, Davie JR: Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem J 1993, 296(Pt 3):737-744.
  • [10]Wang X, Hayes JJ: Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 2008, 28:227-236.
  • [11]Chandrasekharan MB, Huang F, Sun Z-W: Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics 2010, 5:460-468.
  • [12]Henikoff S, Henikoff JG, Sakai A, Loeb GB, Ahmad K: Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 2009, 19:460-469.
  • [13]Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G: H3.3/H2A.Z double variant-containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions. Nat Genet 2009, 41:941-945.
  • [14]Tolstorukov MY, Kharchenko PV, Goldman JA, Kingston RE, Park PJ: Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome Res 2009, 19:967-977.
  • [15]Weintraub H, Groudine M: Chromosomal subunits in active genes have an altered conformation. Science 1976, 193:848-856.
  • [16]Meshorer E, Misteli T: Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 2006, 7:540-546.
  • [17]Meshorer E: Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol 2007, 22:311-319.
  • [18]Crawford GE, Davis S, Scacheri PC, Renaud G, Halawi MJ, Erdos MR, Green R, Meltzer PS, Wolfsberg TG, Collins FS: DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods 2006, 3:503-509.
  • [19]Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM, Cao H, Yu M, Rosenzweig E, Goldy J, Haydock A, Weaver M, Shafer A, Lee K, Neri F, Humbert R, Singer MA, Richmond TA, Dorschner MO, McArthur M, Hawrylycz M, Green RD, Navas PA, Noble WS, Stamatoyannopoulos JA: Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 2006, 3:511-518.
  • [20]Wu C: The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 1980, 286:854-860.
  • [21]Saragosti S, Moyne G, Yaniv M: Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell 1980, 20:65-73.
  • [22]Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A, Wang Z, Wei G, Zhao K: Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132:887-898.
  • [23]Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE: High-resolution mapping and characterization of open chromatin across the genome. Cell 2008, 132:311-322.
  • [24]Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD: FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 2007, 17:877-885.
  • [25]Waki H, Nakamura M, Yamauchi T, Wakabayashi K, Yu J, Hirose-Yotsuya L, Take K, Sun W, Iwabu M, Okada-Iwabu M, Fujita T, Aoyama T, Tsutsumi S, Ueki K, Kodama T, Sakai J, Aburatani H, Kadowaki T: Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet 2011, 7:e1002311.
  • [26]Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ: Genome-scale identification of nucleosome positions in S. cerevisiae. Science 2005, 309:626-630.
  • [27]Henikoff JG, Belsky JA, Krassovsky K, MacAlpine DM, Henikoff S: Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A 2011, 108:18318-18323.
  • [28]Kent NA, Adams S, Moorhouse A, Paszkiewicz K: Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Res 2011, 39:e26.
  • [29]Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM, Groudine M, Bender M, Kaul R, Canfield T, Giste E, Johnson A, Zhang M, Balasundaram G, Byron R, Roach V, Sabo PJ, Sandstrom R, Stehling AS, Thurman RE, Weissman SM, Cayting P, Hariharan M, Lian J, Cheng Y, Landt SG, Ma Z, Wold BJ, Dekker J, Mouse ENCODE Consortium, et al.: An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 2012, 13:418.
  • [30]Liberator PA, Lingrel JB: Restriction endonuclease accessibility of the developmentally regulated goat gamma-, beta C-, and beta A-globin genes in chromatin. Differences in 5’ regions which show unusually high sequence homology. J Biol Chem 1984, 259:15497-15501.
  • [31]Almer A, Hörz W: Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J 1986, 5:2681-2687.
  • [32]Logie C, Peterson CL: Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J 1997, 16:6772-6782.
  • [33]Narlikar GJ, Phelan ML, Kingston RE: Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol Cell 2001, 8:1219-1230.
  • [34]Ohkawa Y, Marfella CGA, Imbalzano AN: Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J 2006, 25:490-501.
  • [35]Gargiulo G, Levy S, Bucci G, Romanenghi M, Fornasari L, Beeson KY, Goldberg SM, Cesaroni M, Ballarini M, Santoro F, Bezman N, Frigè G, Gregory PD, Holmes MC, Strausberg RL, Pelicci PG, Urnov FD, Minucci S: NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation. Dev Cell 2009, 16:466-481.
  • [36]Pfeiffer W, Zachau HG: Accessibility of expressed and non-expressed genes to a restriction nuclease. Nucleic Acids Res 1980, 8:4621-4638.
  • [37]Felsenfeld G: Chromatin as an essential part of the transcriptional mechanism. Nature 1992, 355:219-224.
  • [38]Kornberg RD, Lorch Y: Chromatin structure and transcription. Annu Rev Cell Biol 1992, 8:563-587.
  • [39]Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005, 6:893-904.
  • [40]Davie JR, Saunders CA: Chemical composition of nucleosomes among domains of calf thymus chromatin differing in micrococcal nuclease accessibility and solubility properties. J Biol Chem 1981, 256:12574-12580.
  • [41]Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RDG, Chenoweth JG, Tesar PJ, Furey TS, Ren B, Weng Z, Crawford GE: Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 2007, 3:e136.
  • [42]Saeed S, Logie C, Francoijs K-J, Frigè G, Romanenghi M, Nielsen FG, Raats L, Shahhoseini M, Huynen M, Altucci L, Minucci S, Martens JHA, Stunnenberg HG: Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood 2012, 120:3058-3068.
  • [43]Carone BR, Hung J-H, Hainer SJ, Chou M-T, Carone DM, Weng Z, Fazzio TG, Rando OJ: High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 2014, 30:11-22.
  • [44]Fedoriw AM, Stein P, Svoboda P, Schultz RM, Bartolomei MS: Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 2004, 303:238-240.
  • [45]Szabó PE, Tang S-HE, Silva FJ, Tsark WMK, Mann JR: Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol Cell Biol 2004, 24:4791-4800.
  • [46]Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R: CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 2006, 103:10684-10689.
  • [47]Fu Y, Sinha M, Peterson CL, Weng Z: The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 2008, 4:e1000138.
  • [48]Cuddapah S, Jothi R, Schones DE, Roh T-Y, Cui K, Zhao K: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 2009, 19:24-32.
  • [49]Cao K, Lailler N, Zhang Y, Kumar A, Uppal K, Liu Z, Lee EK, Wu H, Medrzycki M, Pan C, Ho P-Y, Cooper GP Jr, Dong X, Bock C, Bouhassira EE, Fan Y: High-resolution mapping of h1 linker histone variants in embryonic stem cells. PLoS Genet 2013, 9:e1003417.
  • [50]Niwa H, Miyazaki J, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000, 24:372-376.
  • [51]Skene PJ, Henikoff S: Histone variants in pluripotency and disease. Development 2013, 140:2513-2524.
  • [52]Hu G, Cui K, Northrup D, Liu C, Wang C, Tang Q, Ge K, Levens D, Crane-Robinson C, Zhao K: H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2013, 12:180-192.
  • [53]Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, Young RA, Jaenisch R, Boyer LA: H2A.Z is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 2008, 135:649-661.
  • [54]Ahmad K, Henikoff S: The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002, 9:1191-1200.
  • [55]Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee Y-L, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD: Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010, 140:678-691.
  • [56]Szenker E, Ray-Gallet D, Almouzni G: The double face of the histone variant H3.3. Cell Res 2011, 21:421-434.
  • [57]Mizuguchi G, Shen X, Landry J, Wu W-H, Sen S, Wu C: ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2004, 303:343-348.
  • [58]Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004, 116:51-61.
  • [59]Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA: Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 2007, 17:240-248.
  • [60]Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA: Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3:e3376.
  • [61]McClelland M: The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Res 1981, 9:5859-5866.
  • [62]Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O: Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 1987, 330:576-578.
  • [63]Yildirim O, Li R, Hung J-H, Chen PB, Dong X, Ee L-S, Weng Z, Rando OJ, Fazzio TG: Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 2011, 147:1498-1510.
  • [64]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [65]Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, Green MR: ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237. BioMed Central Full Text
  • [66]Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010, 38:576-589.
  • [67]Yang D, Buchholz F, Huang Z, Goga A, Chen C-Y, Brodsky FM, Bishop JM: Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci U S A 2002, 99:9942-9947.
  • [68]Fazzio TG, Huff JT, Panning B: An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 2008, 134:162-174.
  • [69]Chen PB, Hung J-H, Hickman TL, Coles AH, Carey JF, Weng Z, Chu F, Fazzio TG: Hdac6 regulates Tip60-p400 function in stem cells. Elife 2013, 2:e01557.
  文献评价指标  
  下载次数:43次 浏览次数:4次