期刊论文详细信息
BMC Structural Biology
Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases
Daisuke Kohda3  Atsushi Shimada2  Shunsuke Matsumoto1 
[1] Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan;RIKEN Systems and Structural Biology Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Japan;Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan
关键词: Oligosaccharyltransferase;    MBP fusion;    N-glycosylation;    Crystal structure;    Archaeoglobus fulgidus;    AglB;   
Others  :  1091241
DOI  :  10.1186/1472-6807-13-11
 received in 2013-03-06, accepted in 2013-06-28,  发布年份 2013
PDF
【 摘 要 】

Background

Protein N-glycosylation occurs in the three domains of life. Oligosaccharyltransferase (OST) transfers an oligosaccharide chain to the asparagine residue in the N-glycosylation sequons. The catalytic subunits of the OST enzyme are STT3 in eukaryotes, AglB in archaea and PglB in eubacteria. The genome of a hyperthermophilic archaeon, Archaeoglobus fulgidus, encodes three paralogous AglB proteins. We previously solved the crystal structures of the C-terminal globular domains of two paralogs, AglB-Short 1 and AglB-Short 2.

Results

We determined the crystal structure of the C-terminal globular domain of the third AglB paralog, AglB-Long, at 1.9 Å resolutions. The crystallization of the fusion protein with maltose binding protein (MBP) afforded high quality protein crystals. Two MBP-AglB-L molecules formed a swapped dimer in the crystal. Since the fusion protein behaved as a monomer upon gel filtration, we reconstituted the monomer structure from the swapped dimer by exchanging the swapped segments. The C-terminal domain of A. fulgidus AglB-L includes a structural unit common to AglB-S1 and AglB-S2. This structural unit contains the evolutionally conserved WWDYG and DK motifs. The present structure revealed that A. fulgidus AglB-L contained a variant type of the DK motif with a short insertion, and confirmed that the second signature residue, Lys, of the DK motif participates in the formation of a pocket that binds to the serine and threonine residues at the +2 position of the N-glycosylation sequon.

Conclusions

The structure of A. fulgidus AglB-L, together with the two previously solved structures of AglB-S1 and AglB-S2, provides a complete overview of the three AglB paralogs encoded in the A. fulgidus genome. All three AglBs contain a variant type of the DK motif. This finding supports a previously proposed rule: The STT3/AglB/PglB paralogs in one organism always contain the same type of Ser/Thr-binding pocket. The present structure will be useful as a search model for molecular replacement in the structural determination of the full-length A. fulgidus AglB-L.

【 授权许可】

   
2013 Matsumoto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170522725.pdf 2473KB PDF download
Figure 4. 126KB Image download
Figure 3. 126KB Image download
Figure 2. 25KB Image download
Figure 1. 127KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Calo D, Kaminski L, Eichler J: Protein glycosylation in Archaea: sweet and extreme. Glycobiology 2010, 20:1065-1076.
  • [2]Yan A, Lennarz WJ: Unraveling the mechanism of protein N-glycosylation. J Biol Chem 2005, 280:3121-3124.
  • [3]Apweiler R, Hermjakob H, Sharon N: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999, 1473:4-8.
  • [4]Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR: Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 2004, 14:103-114.
  • [5]Knauer R, Lehle L: The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta 1999, 1426:259-273.
  • [6]Mohorko E, Glockshuber R, Aebi M: Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 2011, 34:869-878.
  • [7]Jaffee MB, Imperiali B: Exploiting topological constraints to reveal buried sequence motifs in the membrane-bound N-linked oligosaccharyl transferases. Biochemistry 2011, 50:7557-7567.
  • [8]Kim H, von Heijne G, Nilsson I: Membrane topology of the STT3 subunit of the oligosaccharyl transferase complex. J Biol Chem 2005, 280:20261-20267.
  • [9]Li L, Woodward R, Ding Y, Liu XW, Yi W, Bhatt VS, Chen M, Zhang LW, Wang PG: Overexpression and topology of bacterial oligosaccharyltransferase PglB. Biochem Biophys Res Commun 2010, 394:1069-1074.
  • [10]Liu J, Mushegian A: Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 2003, 12:1418-1431.
  • [11]Yan Q, Lennarz WJ: Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem 2002, 277:47692-47700.
  • [12]Igura M, Kohda D: Selective control of oligosaccharide transfer efficiency for the N-glycosylation sequon by a point mutation in oligosaccharyltransferase. J Biol Chem 2011, 286:13255-13260.
  • [13]Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, Kohda D: Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 2008, 27:234-243.
  • [14]Maita N, Nyirenda J, Igura M, Kamishikiryo J, Kohda D: Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem 2010, 285:4941-4950.
  • [15]Matsumoto S, Igura M, Nyirenda J, Matsumoto M, Yuzawa S, Noda N, Inagaki F, Kohda D: Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution. Biochemistry 2012, 51:4157-4166.
  • [16]Nyirenda J, Matsumoto S, Saitoh T, Maita N, Noda NN, Inagaki F, Kohda D: Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Structure 2013, 21:32-41.
  • [17]Lizak C, Gerber S, Numao S, Aebi M, Locher KP: X-ray structure of a bacterial oligosaccharyltransferase. Nature 2011, 474:350-355.
  • [18]Gerber S, Lizak C, Michaud G, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP: Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J Biol Chem 2013, 288:8849-8861.
  • [19]Ruiz-Canada C, Kelleher DJ, Gilmore R: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 2009, 136:272-283.
  • [20]Izquierdo L, Schulz BL, Rodrigues JA, Guther ML, Procter JB, Barton GJ, Aebi M, Ferguson MA: Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J 2009, 28:2650-2661.
  • [21]Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B: Crystal structures of fusion proteins with large-affinity tags. Protein Sci 2003, 12:1313-1322.
  • [22]Moon AF, Mueller GA, Zhong X, Pedersen LC: A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci 2010, 19:901-913.
  • [23]Bennett MJ, Schlunegger MP, Eisenberg D: 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 1995, 4:2455-2468.
  • [24]Gronenborn AM: Protein acrobatics in pairs–dimerization via domain swapping. Curr Opin Struct Biol 2009, 19:39-49.
  • [25]Horton RM, Cai ZL, Ho SN, Pease LR: Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 1990, 8:528-535.
  • [26]Otwinowski Z, Minor W: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997, 276:307-326.
  • [27]DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U, Valkov E, Alon A, Fass D, Axelrod HL, et al.: Improved molecular replacement by density- and energy-guided protein structure optimization. Nature 2011, 473:540-543.
  • [28]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D: Biol Crystallogr 2004, 60:2126-2132.
  • [29]Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D: Biol Crystallogr 2010, 66:213-221.
  • [30]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  文献评价指标  
  下载次数:20次 浏览次数:6次