期刊论文详细信息
BMC Genomics
Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins
Marilis do Valle Marques1  José Freire da Silva Neto2  Vânia Santos Braz2  Ricardo Ruiz Mazzon1 
[1] Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil;Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil
关键词: TonB-dependent receptor;    Zinc homeostasis;    Zur regulon;    Caulobacter crescentus;   
Others  :  1141132
DOI  :  10.1186/1471-2164-15-734
 received in 2014-05-06, accepted in 2014-08-21,  发布年份 2014
PDF
【 摘 要 】

Background

Intracellular zinc concentration needs to be maintained within strict limits due to its toxicity at high levels, and this is achieved by a finely regulated balance between uptake and efflux. Many bacteria use the Zinc Uptake Regulator Zur to orchestrate zinc homeostasis, but little is known regarding the transport of this metal across the bacterial outer membrane.

Results

In this work we determined the Caulobacter crescentus Zur regulon by global transcriptional and in silico analyses. Among the genes directly repressed by Zur in response to zinc availability are those encoding a putative high affinity ABC uptake system (znuGHI), three TonB-dependent receptors (znuK, znuL and znuM) and one new putative transporter of a family not yet characterized (zrpW). Zur is also directly involved in the activation of a RND and a P-type ATPase efflux systems, as revealed by β-galactosidase and site-directed mutagenesis assays. Several genes belonging to the Fur regulon were also downregulated in the zur mutant, suggesting a putative cross-talk between Zur and Fur regulatory networks. Interestingly, a phenotypic analysis of the znuK and znuL mutants has shown that these genes are essential for growth under zinc starvation, suggesting that C. crescentus uses these TonB-dependent outer membrane transporters as key zinc scavenging systems.

Conclusions

The characterization of the C. crescentus Zur regulon showed that this regulator coordinates not only uptake, but also the extrusion of zinc. The uptake of zinc by C. crescentus in conditions of scarcity of this metal is highly dependent on TonB-dependent receptors, and the extrusion is mediated by an RND and P-type ATPase transport systems. The absence of Zur causes a disturbance in the dynamic equilibrium of zinc intracellular concentration, which in turn can interfere with other regulatory networks as seen for the Fur regulon.

【 授权许可】

   
2014 Mazzon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325235646998.pdf 1202KB PDF download
Figure 5. 96KB Image download
Figure 4. 91KB Image download
Figure 3. 38KB Image download
Figure 2. 177KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Blencowe DK, Morby AP: Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 2003, 27:291-311.
  • [2]Braymer JJ, Giedroc DP: Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol 2014, 19:59-66.
  • [3]Hantke K: Bacterial zinc uptake and regulators. Curr Opin Microbiol 2005, 8:196-202.
  • [4]Hantke K: Bacterial zinc transporters and regulators. Biometals 2001, 14:239-249.
  • [5]Lee JW, Helmann JD: Functional specialization within the Fur family of metalloregulators. Biometals 2007, 20:485-499.
  • [6]Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP: ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 1999, 31:893-902.
  • [7]Busenlehner LS, Pennella MA, Giedroc DP: The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 2003, 27:131-143.
  • [8]Huang D, Tang D, Liao Q, Li H, Chen Q, He Y, Feng J, Jiamg B, Lu G, Chen B, Tang J: The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res 2008, 36:4295-4309.
  • [9]Schröder J, Jochmann N, Rodionov DA, Tauch A: The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 2010, 11:12. BioMed Central Full Text
  • [10]Teramoto H, Inui M, Yukawa H: Corynebacterium glutamicum Zur acts as a zinc-sensing transcriptional repressor of both zinc-inducible and zinc-repressible genes involved in zinc homeostasis. FEBS Journal 2012, 279:4385-4397.
  • [11]Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE, Poolman JT, Tommassen J: An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog 2010, 6:e1000969.
  • [12]Stork M, Grijpstra J, Bos MP, Mañas Torres C, Devos N, Poolman JT, Chazin WJ, Tommassen J: Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathog 2013, 9:e1003733.
  • [13]Patzer SI, Hantke K: The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 1998, 28:1199-1210.
  • [14]Moore CM, Helmann JD: Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 2005, 8:188-195.
  • [15]Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF: Identifification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 2000, 35:1065-1078.
  • [16]Grass G, Wong MD, Rosen BP, Smith RL, Rensing C: ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 2002, 184:864-866.
  • [17]Elvin CM, Dixon NE, Rosenberg H: Molecular cloning of the phosphate (inorganic) transport (pit) gene of Escherichia coli K12. Identification of the pitB gene product and physical mapping of the pit-gor region of the chromosome. Mol Gen Genet 1986, 204:477-484.
  • [18]Rensing C, Mitra B, Rosen BP: The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 1997, 94:14326-14331.
  • [19]Nies DH: The cobalt, zinc and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 1995, 77:2707-2712.
  • [20]Xiong A, Jayaswal RK: Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J Bacteriol 1998, 180:4024-4029.
  • [21]Feria MP, Thrash JC, Giovannoni SJ, Patrick WM: New rRNA Gene-Based Phylogenies of the Alphaproteobacteria Provide Perspective on Major Groups. Mitochondrial Ancestry and Phylogenetic Instability. PLoS One 2013, 8:e83383.
  • [22]Li Y, Qiu Y, Gao H, Guo Z, Han Y, Song Y, Du Z, Wang X, Zhou D, Yang R: Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis. BMC Microbiol 2009, 9:128. BioMed Central Full Text
  • [23]Yang X, Becker T, Walters N, Pascual DW: Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infect Immun 2006, 74:3874-3879.
  • [24]Curtis PD, Brun YV: Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 2010, 74:13-41.
  • [25]Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM: Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 2001, 98:4136-4141.
  • [26]da Silva Neto JF, Braz VS, Italiani VCS, Marques MV: Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alphaproteobacterium Caulobacter crescentus. Nucleic Acids Res 2009, 37:4812-4825.
  • [27]da Silva Neto JF, Lourenço RF, Marques MV: Global transcriptional response of Caulobacter crescentus to iron availability. BMC Genomics 2013, 14:549. BioMed Central Full Text
  • [28]Braz VS, da Silva Neto JF, Italiani VCS, Marques MV: CztR, a LysR-Type Transcriptional Regulator Involved in Zinc Homeostasis and Oxidative Stress Defense in Caulobacter crescentus. J Bacteriol 2010, 192:5480-5488.
  • [29]Valencia EY, Braz VS, Guzzo C, Marques MV: Two RND proteins involved in heavy metal efflux in Caulobacter crescentus belong to separate clusters within proteobacteria. BMC Microbiol 2013, 13:79. BioMed Central Full Text
  • [30]McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH: High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 2007, 25:584-592.
  • [31]Braz VS, Marques MV: Genes involved in cadmium resistance in Caulobacter crescentus. FEMS Microbiol Lett 2005, 251:289-295.
  • [32]Pawlik MC, Hubert K, Joseph B, Claus H, Schoen C, Vogel U: The zinc-responsive regulon of Neisseria meningitidis comprises 17 genes under control of a Zur element. J Bacteriol 2012, 194:6594-6603.
  • [33]Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT: The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5. Environ Microbiol 2012, 15:702-715.
  • [34]Mills SA, Marletta MA: Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochem 2005, 44:13553-13559.
  • [35]Ma Z, Faulkner MJ, Helmann JD: Origins of Specificity and Crosstalk in Metal Ion Sensing by Bacillus subtilis Fur. Mol Microbiol 2012, 86:1144-1155.
  • [36]Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML: Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 2003, 47:903-915.
  • [37]Ma Z, Lee JW, Helmann JD: Identification of altered function alleles that affect Bacillus subtilis PerR metal ion selectivity. Nucleic Acids Res 2011, 39:5036-5044.
  • [38]Gaballa A, Wang T, Ye RW, Helmann JD: Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol 2002, 184:6508-6514.
  • [39]Gabriel SE, Helmann JD: Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J Bacteriol 2009, 191:6116-6122.
  • [40]Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palù G, Riccardi G, Manganelli R: Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 2007, 189:730-740.
  • [41]Panina EM, Mironov AA, Gelfand MS: Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A 2003, 100:9912-9917.
  • [42]Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V: A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 2009, 10:470. BioMed Central Full Text
  • [43]Nies DH: Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 2003, 27:313-339.
  • [44]Schauer K, Rodionov DA, de Reuse H: New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 2008, 33:330-338.
  • [45]Schauer K, Gouget B, Carrière M, Labigne A, de Reuse H: Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 2007, 63:1054-1068.
  • [46]Ely B: Genetics of Caulobacter crescentus. Methods Enzymol 1991, 204:372-384.
  • [47]Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L: Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription and the chaperone gene grpE. J Bacteriol 1996, 178:1829-1841.
  • [48]Simon R, Priefer U, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1983, 1:784-791.
  • [49]Meisenzahl AC, Shapiro L, Jenal U: Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. J Bacteriol 1997, 179:592-600.
  • [50]Gober JW, Shapiro L: A developmentally regulated Caulobacter flagellar promoter is activated by 30 enhancer and IHF binding elements. Mol Biol Cell 1992, 3:913-916.
  • [51]Mazzon RR, Lang EAS, da Silva CAPT, Marques MV: Cold Shock Genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J Bacteriol 2012, 194:6507-6517.
  • [52]Miller JH: Experiments in molecular genetics: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972.
  • [53]Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J: RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 2011, 39:W86-W91.
  • [54]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology: August 1994. Edited by Altman RB, Brutlag DL, Karp PD, Lathrop RH, Searls DB. Menlo Park, CA: AAAI Press; 1994:28-36.
  • [55]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  文献评价指标  
  下载次数:1次 浏览次数:5次