期刊论文详细信息
BMC Microbiology
A multi-omic analysis of an Enterococcus faecium mutant reveals specific genetic mutations and dramatic changes in mRNA and protein expression
Changting Liu2  Ruifu Yang3  Chengxiang Fang1  Xiangqun Fang2  Tianzhi Li2  Junfeng Wang2  Li Wang2  Yajuan Wang2  Zhenhong Chen2  Yinghua Guo2  Longxiang Su2  Jinwen Liu1  Li An2  Yuanfang Zhu1  De Chang2 
[1]BGI-Shenzhen, Shenzhen, People’s Republic of China
[2]Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, China
[3]State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
关键词: Multi-omics;    Proteome;    Transcriptome;    Genome;    E. faecium;   
Others  :  1142192
DOI  :  10.1186/1471-2180-13-304
 received in 2013-10-07, accepted in 2013-12-24,  发布年份 2013
PDF
【 摘 要 】

Background

For a long time, Enterococcus faecium was considered a harmless commensal of the mammalian gastrointestinal (GI) tract and was used as a probiotic in fermented foods. In recent decades, E. faecium has been recognised as an opportunistic pathogen that causes diseases such as neonatal meningitis, urinary tract infections, bacteremia, bacterial endocarditis and diverticulitis. E. faecium could be taken into space with astronauts and exposed to the space environment. Thus, it is necessary to observe the phenotypic and molecular changes of E. faecium after spaceflight.

Results

An E. faecium mutant with biochemical features that are different from those of the wild-type strain was obtained from subculture after flight on the SHENZHOU-8 spacecraft. To understand the underlying mechanism causing these changes, the whole genomes of both the mutant and the WT strains were sequenced using Illumina technology. The genomic comparison revealed that dprA, a recombination-mediator gene, and arpU, a gene associated with cell wall growth, were mutated. Comparative transcriptomic and proteomic analyses showed that differentially expressed genes or proteins were involved with replication, recombination, repair, cell wall biogenesis, glycometabolism, lipid metabolism, amino acid metabolism, predicted general function and energy production/conversion.

Conclusion

This study analysed the comprehensive genomic, transcriptomic and proteomic changes of an E. faecium mutant from subcultures that were loaded on the SHENZHOU-8 spacecraft. The implications of these gene mutations and expression changes and their underlying mechanisms should be investigated in the future. We hope that the current exploration of multiple “-omics” analyses of this E. faecium mutant will provide clues for future studies on this opportunistic pathogen.

【 授权许可】

   
2013 Chang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328002712825.pdf 2491KB PDF download
Figure 6. 85KB Image download
Figure 5. 82KB Image download
Figure 4. 95KB Image download
Figure 3. 86KB Image download
Figure 2. 50KB Image download
Figure 1. 123KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Franz CM, Stiles ME, Schleifer KH, Holzapfel WH: Enterococci in foods–a conundrum for food safety. Int J Food Microbiol 2003, 88(2–3):105-122.
  • [2]Lund B, Edlund C: Probiotic Enterococcus faecium strain is a possible recipient of the vanA gene cluster. Clin Infect Dis 2001, 32(9):1384-1385.
  • [3]Knoll BM, Hellmann M, Kotton CN: Vancomycin-resistant Enterococcus faecium meningitis in adults: case series and review of the literature. Scand J Infect Dis 2013, 45(2):131-139.
  • [4]Simjee S, White DG, McDermott PF, Wagner DD, Zervos MJ, Donabedian SM, English LL, Hayes JR, Walker RD: Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: evidence of gene exchange between human and animal enterococci. J Clin Microbiol 2002, 40(12):4659-4665.
  • [5]Polidori M, Nuccorini A, Tascini C, Gemignani G, Iapoce R, Leonildi A, Tagliaferri E, Menichetti F: Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J Chemother 2011, 23(4):240-241.
  • [6]Arias CA, Mendes RE, Stilwell MG, Jones RN, Murray BE: Unmet needs and prospects for oritavancin in the management of vancomycin-resistant enterococcal infections. Clin Infect Dis 2012, 54(Suppl 3):S233-S238.
  • [7]Olofsson MB, Pornull KJ, Karnell A, Telander B, Svenungsson B: Fecal carriage of vancomycin- and ampicillin-resistant Enterococci observed in Swedish adult patients with diarrhea but not among healthy subjects. Scand J Infect Dis 2001, 33(9):659-662.
  • [8]Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008, 26(10):1135-1145.
  • [9]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [10]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012, 40(Web Server issue):W622-W627.
  • [11]Nanjo Y, Skultety L, Uvackova L, Klubicova K, Hajduch M, Komatsu S: Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 2012, 11(1):372-385.
  • [12]Tomazella GG, Risberg K, Mylvaganam H, Lindemann PC, Thiede B, de Souza GA, Wiker HG: Proteomic analysis of a multi-resistant clinical Escherichia coli isolate of unknown genomic background. J Proteomics 2012, 75(6):1830-1837.
  • [13]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(2):573-580.
  • [14]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1–4):462-467.
  • [15]Chen N: Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. 2004. [Current Protocols in Bioinformatics/Editoral Board, Andreas D Baxevanis [et al.] 2004, Chapter 4:Unit 4 10]
  • [16]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [17]Nawrocki EP, Eddy SR: Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007, 3(3):e56.
  • [18]Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam: an RNA family database. Nucleic Acids Res 2003, 31(1):439-441.
  • [19]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [20]Li H, Durbin R: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [21]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [22]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7(10):986-995.
  • [23]Unwin RD, Griffiths JR, Whetton AD: Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat Protoc 2010, 5(9):1574-1582.
  • [24]Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004, 20(18):3710-3715.
  • [25]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38(Database issue):D355-D360.
  • [26]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al.: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20(2):265-272.
  • [27]Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673-679.
  • [28]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [29]Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28(1):33-36.
  • [30]Bairoch A, Apweiler R: The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res 1999, 27(1):49-54.
  • [31]Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, et al.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31(1):365-370.
  • [32]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37(Database issue):D233-D238.
  • [33]Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J, Hammond-Kosack KE: PHI-base: a new database for pathogen host interactions. Nucleic Acids Res 2006, 34(Database issue):D459-D464.
  • [34]Chakraborty A, Ghosh S, Chowdhary G, Maulik U, Chakrabarti S: DBETH: a database of bacterial exotoxins for human. Nucleic Acids Res 2012, 40(Database issue):D615-D620.
  • [35]Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q: VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005, 33(Database issue):D325-D328.
  • [36]Delcher AL, Salzberg SL, Phillippy AM: Using MUMmer to Identify Similar Regions in Large Sequence Sets. 2003. [Current Protocols in Bioinformatics/Editoral Board, Andreas D Baxevanis [et al.] 2003, Chapter 10:Unit 10 13]
  • [37]Lemeer S, Hahne H, Pachl F, Kuster B: Software tools for MS-based quantitative proteomics: a brief overview. Methods Mol Biol 2012, 893:489-499.
  • [38]Greenbaum D, Jansen R, Gerstein M: Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics 2002, 18(4):585-596.
  • [39]Zhang W, Culley DE, Scholten JC, Hogan M, Vitiritti L, Brockman FJ: Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie Van Leeuwenhoek 2006, 89(2):221-237.
  • [40]Nie L, Wu G, Culley DE, Scholten JC, Zhang W: Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 2007, 27(2):63-75.
  • [41]Crick F: Central dogma of molecular biology. Nature 1970, 227(5258):561-563.
  • [42]Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19(3):1720-1730.
  • [43]Lleo MM, Fontana R, Solioz M: Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae. J Bacteriol 1995, 177(20):5912-5917.
  • [44]Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C: Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 2009, 75(11):3484-3491.
  • [45]Zhang XS, Blaser MJ: DprB facilitates inter- and intragenomic recombination in Helicobacter pylori. J Bacteriol 2012, 194(15):3891-3903.
  • [46]Tadesse S, Graumann PL: DprA/Smf protein localizes at the DNA uptake machinery in competent Bacillus subtilis cells. BMC Microbiol 2007, 7:105. BioMed Central Full Text
  • [47]Mortier-Barriere I, Velten M, Dupaigne P, Mirouze N, Pietrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, et al.: A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 2007, 130(5):824-836.
  • [48]Yadav T, Carrasco B, Myers AR, George NP, Keck JL, Alonso JC: Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins. Nucleic Acids Res 2012, 40(12):5546-5559.
  文献评价指标  
  下载次数:50次 浏览次数:27次