期刊论文详细信息
BMC Medical Genomics
Harmful somatic amino acid substitutions affect key pathways in cancers
Mauno Vihinen1  Abhishek Niroula1 
[1] Department of Experimental Medical Science, Lund University, BMC B13, SE-22184, Lund, Sweden
关键词: Cancer relationship;    Cancer pathways;    Somatic mutations;    Cancer genomes;   
Others  :  1222985
DOI  :  10.1186/s12920-015-0125-x
 received in 2015-06-18, accepted in 2015-07-30,  发布年份 2015
PDF
【 摘 要 】

Background

Cancer is characterized by the accumulation of large numbers of genetic variations and alterations of multiple biological phenomena. Cancer genomics has largely focused on the identification of such genetic alterations and the genes containing them, known as ‘cancer genes’. However, the non-functional somatic variations out-number functional variations and remain as a major challenge. Recurrent somatic variations are thought to be cancer drivers but they are present in only a small fraction of patients.

Methods

We performed an extensive analysis of amino acid substitutions (AASs) from 6,861 cancer samples (whole genome or exome sequences) classified into 30 cancer types and performed pathway enrichment analysis. We also studied the overlap between the cancers based on proteins containing harmful AASs and pathways affected by them.

Results

We found that only a fraction of AASs (39.88 %) are harmful even in known cancer genes. In addition, we found that proteins containing harmful AASs in cancers are often centrally located in protein interaction networks. Based on the proteins containing harmful AASs, we identified significantly affected pathways in 28 cancer types and indicate that proteins containing harmful AASs can affect pathways despite the frequency of AASs in them. Our cross-cancer overlap analysis showed that it would be more beneficial to identify affected pathways in cancers rather than individual genes and variations.

Conclusion

Pathways affected by harmful AASs reveal key processes involved in cancer development. Our approach filters out the putative benign AASs thus reducing the list of cancer variations allowing reliable identification of affected pathways. The pathways identified in individual cancer and overlap between cancer types open avenues for further experimental research and for developing targeted therapies and interventions.

【 授权许可】

   
2015 Niroula and Vihinen.

【 预 览 】
附件列表
Files Size Format View
20150829023036867.pdf 2192KB PDF download
Fig. 5. 69KB Image download
Fig. 4. 119KB Image download
Fig. 3. 83KB Image download
Fig. 2. 62KB Image download
Fig. 1. 24KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-74.
  • [2]Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 1990, 61(5):759-67.
  • [3]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW: Cancer genome landscapes. Science 2013, 339(6127):1546-58.
  • [4]Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458(7239):719-24.
  • [5]AlQuraishi M, Koytiger G, Jenney A, MacBeath G, Sorger PK: A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat Genet 2014, 46(12):1363-71.
  • [6]Carlsson J, Soussi T, Persson B: Investigation and prediction of the severity of p53 mutants using parameters from structural calculations. FEBS J 2009, 276(15):4142-55.
  • [7]Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, et al.: International network of cancer genome projects. Nature 2010, 464(7291):993-8.
  • [8]Ding L, Wendl MC, McMichael JF, Raphael BJ: Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet 2014, 15(8):556-70.
  • [9]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al.: Patterns of somatic mutation in human cancer genomes. Nature 2007, 446(7132):153-8.
  • [10]Niroula A, Urolagin S, Vihinen M: PON-P2: prediction method for fast and reliable identification of harmful variants. PLoS One 2015, 10(2):e0117380.
  • [11]Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al.: Signatures of mutational processes in human cancer. Nature 2013, 500(7463):415-21.
  • [12]Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al.: A census of human cancer genes. Nat Rev Cancer 2004, 4(3):177-83.
  • [13]Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al.: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011, 39(Database issue):D945-50.
  • [14]Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al.: ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014, 42(Database issue):D980-5.
  • [15]Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, et al.: Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci U S A 2012, 109(24):9551-6.
  • [16]Ollila J, Lappalainen I, Vihinen M: Sequence specificity in CpG mutation hotspots. FEBS Lett 1996, 396(2–3):119-22.
  • [17]Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al.: The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333(6046):1157-60.
  • [18]Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al.: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011, 333(6046):1154-7.
  • [19]Sun W, Gaykalova DA, Ochs MF, Mambo E, Arnaoutakis D, Liu Y, et al.: Activation of the NOTCH pathway in head and neck cancer. Cancer Res 2014, 74(4):1091-104.
  • [20]Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499(7457):214-8.
  • [21]Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C: Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013, 45(10):1127-33.
  • [22]Durandy A, Kracker S, Fischer A: Primary antibody deficiencies. Nat Rev Immunol 2013, 13(7):519-33.
  • [23]O'Shea JJ, Plenge R: JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012, 36(4):542-50.
  • [24]Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, et al.: MuSiC: identifying mutational significance in cancer genomes. Genome Res 2012, 22(8):1589-98.
  • [25]Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al.: A landscape of driver mutations in melanoma. Cell 2012, 150(2):251-63.
  • [26]Gonzalez-Perez A, Lopez-Bigas N: Functional impact bias reveals cancer drivers. Nucleic Acids Res 2012, 40(21):e169.
  • [27]Tamborero D, Gonzalez-Perez A, Lopez-Bigas N: OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 2013, 29(18):2238-44.
  • [28]Leiserson MD, Vandin F, Wu HT, Dobson JR, Eldridge JV, Thomas JL, et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 2015, 47(2):106-14.
  • [29]Sun J, Zhao Z: A comparative study of cancer proteins in the human protein-protein interaction network. BMC Genomics 2010, 11(Suppl 3):S5. BioMed Central Full Text
  • [30]Väliaho J, Faisal I, Ortutay C, Smith CI, Vihinen M: Characterization of all possible single-nucleotide change caused amino Acid substitutions in the kinase domain of bruton tyrosine kinase. Hum Mutat 2015, 36(6):638-47.
  • [31]Nair PS, Vihinen M: VariBench: a benchmark database for variations. Hum Mutat 2013, 34(1):42-9.
  • [32]Brun R, Rademakers F: ROOT — An object oriented data analysis framework. Nucl Instr Meth Phys Res A 1997, 389(1–2):81-6.
  • [33]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.: UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-12.
  • [34]Wu G, Feng X, Stein L: A human functional protein interaction network and its application to cancer data analysis. Genome Biol 2010, 11(5):R53. BioMed Central Full Text
  • [35]Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al.: A travel guide to Cytoscape plugins. Nat Methods 2012, 9(11):1069-76.
  • [36]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22(13):1600-7.
  文献评价指标  
  下载次数:29次 浏览次数:4次