BMC Neuroscience | |
Recognition of face-name associations after errorless and errorful learning: an fMRI study | |
Thomas F Münte3  Claus Tempelmann2  Anke Hammer1  | |
[1] Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, 91054, Germany;Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany;Department of Neurology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany | |
关键词: Prefrontal; Parietal; Recognition; Face-name associations; Executive control; Errorful; Errorless; | |
Others : 1140385 DOI : 10.1186/1471-2202-14-30 |
|
received in 2012-10-03, accepted in 2013-03-07, 发布年份 2013 |
【 摘 要 】
Background
Errorless learning has advantages over errorful learning. The erroneous items produced during errorful learning compete with correct items at retrieval resulting in decreased memory performance. This interference is associated with an increased demand on executive monitoring processes. Event-related functional magnetic resonance imaging (fMRI) was used to contrast errorless and errorful learning. Learning mode was manipulated by the number of distractors during learning of face-name associations: in errorless learning only the correct name was introduced. During errorful learning either one incorrect name or two incorrect names were additionally introduced in order to modulate the interference in recognition.
Results
The behavioural results showed an enhanced memory performance after errorless learning. The veridicality of recognition of the face-name associations was reflected in a left lateralized fronto-temporal-parietal network. The different learning modes were associated with modulations in left prefrontal and parietal regions.
Conclusions
Errorless learning enhances memory performance as compared to errorful learning and underpins the known advantages for errorless learning. During memory retrieval different networks are engaged for specific purposes: Recognition of face-name associations engaged a lateralized fronto-temporal-parietal network and executive monitoring processes of memory engaged the left prefrontal and parietal regions.
【 授权许可】
2013 Hammer et al; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
111KB | Image | download | |
Figure 2. | 74KB | Image | download |
Figure 1. | 87KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Sperling R, Chua E, Cocchiarella A, Rand-Giovannetti E, Poldrack R, Schacter DL, Albert M: Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003, 20(2):1400-1410.
- [2]Sperling RA, Bates JF, Cocchiarella AJ, Schacter DL, Rosen BR, Albert MS: Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp 2001, 14(3):129-139.
- [3]Zeineh MM, Engel SA, Thompson PM, Bookheimer SY: Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science 2003, 299(5606):577-580.
- [4]De Vogelaere F, Santens P, Achten E, Boon P, Vingerhoets G: Hippocampal activation during face-name associative memory encoding: blocked versus permuted design. Funct Neuroradiology 2010, 52:25-36.
- [5]Konishi S, Wheeler ME, Donaldson DI, Buckner RL: Neural correlates of episodic retrieval success. Neuroimage 2000, 12(3):276-286.
- [6]McDermott KB, Jones TC, Petersen SE, Lageman SK, Roediger HL 3rd: Retrieval success is accompanied by enhanced activation in anterior prefrontal cortex during recognition memory: an event-related fMRI study. J Cogn Neurosci 2000, 12(6):965-976.
- [7]Nolde SF, Johnson MK, D’Esposito M: Left prefrontal activation during episodic remembering: an event-related fMRI study. Neuroreport 1998, 9(15):3509-3514.
- [8]Nolde SF, Johnson MK, Raye CL: The role of prefrontal cortex during tests of episodic memory. Trends Cogn Sci 1998, 2(10):399-406.
- [9]Wagner AD, Shannon BJ, Kahn I, Buckner RL: Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 2005, 9(9):445-453.
- [10]Leube DT, Erb M, Grodd W, Bartels M, Kircher TT: Successful episodic memory retrieval of newly learned faces activates a left fronto-parietal network. Brain Res Cogn Brain Res 2003, 18(1):97-101.
- [11]Yonelinas AP, Otten LJ, Shaw KN, Rugg MD: Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci 2005, 25(11):3002-3008.
- [12]Dobbins IG, Foley H, Schacter DL, Wagner AD: Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 2002, 35(5):989-996.
- [13]Kahn I, Davachi L, Wagner AD: Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J Neurosci 2004, 24(17):4172-4180.
- [14]Manenti R, Cotelli M, Calabria M, Maioli C, Miniussi C: The role of the dorsolateral prefrontal cortex in retrieval from long-term memory depends on strategies: a repetitive transcranial magnetic stimulation study. Neuroscience 2010, 166(2):501-507.
- [15]Buckner RL, Koutstaal W, Schacter DL, Wagner AD, Rosen BR: Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. Neuroimage 1998, 7(3):151-162.
- [16]Rugg MD, Wilding EL: Retrieval processing and episodic memory. Trends Cogn Sci 2000, 4(3):108-115.
- [17]Buckner RL, Wheeler ME: The cognitive neuroscience of remembering. Nat Rev Neurosci 2001, 2(9):624-634.
- [18]Hayes SM, Buchler N, Stokes J, Kragel J, Cabeza R: Neural correlates of confidence during item recognition and source memory retrieval: evidence for both dual-process and strength memory theories. J Cogn Neurosci 2011, 23(12):3959-3971.
- [19]Terrace HS: Discrimination learning with and without “errors”. J Exp Anal Behav 1963, 6:1-27.
- [20]Terrace HS: Errorless transfer of a discrimination across two continua. J Exp Anal Behav 1963, 6:223-232.
- [21]Rodriguez-Fornells A, Kofidis C, Münte TF: An electrophysiological study of errorless learning. Brain Res Cogn Brain Res 2004, 19(2):160-173.
- [22]Heldmann M, Markgraf U, Rodriguez-Fornells A, Münte TF: Brain potentials reveal the role of conflict in human errorful and errorless learning. Neurosci Lett 2008, 444:64-68.
- [23]Hammer A, Kordon A, Heldmann M, Zurowski B, Münte TF: Brain potentials of conflict and error-likelihood following errorful and errorless learning in obsessive-compulsive disorder. PLoS One 2009, 4(8):e6553.
- [24]Baddeley A, Wilson BA: When implicit learning fails: amnesia and the problem of error elimination. Neuropsychologia 1994, 32(1):53-68.
- [25]Hunkin NM, Squires EJ, Parkin AJ, Tidy JA: Are the benefits of errorless learning dependent on implicit memory? Neuropsychologia 1998, 36(1):25-36.
- [26]Glisky EL, Schacter DL, Tulving E: Learning and retention of computer-related vocabulary in memory-impaired patients: method of vanishing cues. J Clin Exp Neuropsychol 1986, 8(3):292-312.
- [27]Squire LR, McKee RD: Declarative and nondeclarative memory in opposition: when prior events influence amnesic patients more than normal subjects. Mem Cognit 1993, 21(4):424-430.
- [28]Squires EJ, Hunkin NM, Parkin AJ: Errorless learning of novel associations in amnesia. Neuropsychologia 1997, 35(8):1103-1111.
- [29]Clare L, Wilson BA, Carter G, Roth I, Hodges JR: Relearning face-name associations in early Alzheimer’s disease. Neuropsychology 2002, 16(4):538-547.
- [30]Clare L, Wilson BA, Carter G, Hodges JR: Cognitive rehabilitation as a component of early intervention in Alzheimer’s disease: a single case study. Aging Ment Health 2003, 7(1):15-21.
- [31]Clare L, Wilson BA, Carter G, Breen K, Gosses A, Hodges JR: Intervening with everyday memory problems in dementia of Alzheimer type: an errorless learning approach. J Clin Exp Neuropsychol 2000, 22(1):132-146.
- [32]Pope JW, Kern RS: An “errorful” learning deficit in schizophrenia? J Clin Exp Neuropsychol 2006, 28(1):101-110.
- [33]Kern RS, Green MF, Mitchell S, Kopelowicz A, Mintz J, Liberman RP: Extensions of errorless learning for social problem-solving deficits in schizophrenia. Am J Psychiatry 2005, 162(3):513-519.
- [34]Kern RS, Liberman RP, Kopelowicz A, Mintz J, Green MF: Applications of errorless learning for improving work performance in persons with schizophrenia. Am J Psychiatry 2002, 159(11):1921-1926.
- [35]O’Carroll RE, Russell HH, Lawrie SM, Johnstone EC: Errorless learning and the cognitive rehabilitation of memory-impaired schizophrenic patients. Psychol Med 1999, 29(1):105-112.
- [36]Clare L, Jones RS: Errorless learning in the rehabilitation of memory impairment: a critical review. Neuropsychol Rev 2008, 18:1-23.
- [37]Ueno H, Maruishi M, Miyatani M, Muranaka H, Kondo K, Ohshita T, Matsumoto M: Brain activations in errorless and errorful learning in patients with diffuse axonal injury: a functional MRI study. Brain Inj 2009, 23(4):291-298.
- [38]Dehaene S, Posner MI, Tucker DM: Localization of a neural system for error detection and compensation. Psychol Sci 1994, 5(5):303-305.
- [39]Gemba H, Sasaki K, Brooks VB: ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neurosci Lett 1986, 70(2):223-227.
- [40]Luu P, Tucker DM: Regulating action: alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol 2001, 112(7):1295-1306.
- [41]Herrmann M, Rotte M, Grubich C, Ebert AD, Schiltz K, Munte TF, Heinze HJ: Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate-prefrontal activation pattern. Hum Brain Mapp 2001, 13(2):94-103.
- [42]van Veen V, Holroyd CB, Cohen JD, Stenger VA, Carter CS: Errors without conflict: implications for performance monitoring theories of anterior cingulate cortex. Brain Cogn 2004, 56(2):267-276.
- [43]Ullsperger M, von Cramon DY: Decision making, performance and outcome monitoring in frontal cortical areas. Nat Neurosci 2004, 7(11):1173-1174.
- [44]Ullsperger M, von Cramon DY: Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 2001, 14(6):1387-1401.
- [45]Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S: The role of the medial frontal cortex in cognitive control. Science 2004, 306(5695):443-447.
- [46]van Veen V, Carter CS: The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 2002, 77(4–5):477-482.
- [47]Gehring WJ, Knight RT: Prefrontal-cingulate interactions in action monitoring. Nat Neurosci 2000, 3(5):516-520.
- [48]Hester R, Fassbender C, Garavan H: Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb Cortex 2004, 14(9):986-994.
- [49]Fuentemilla L, Camara E, Munte TF, Kramer UM, Cunillera T, Marco-Pallares J, Tempelmann C, Rodriguez-Fornells A: Individual differences in true and false memory retrieval are related to white matter brain microstructure. J Neurosci 2009, 29(27):8698-8703.
- [50]van Veen V, Cohen JD, Botvinick MM, Stenger VA, Carter CS: Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 2001, 14(6):1302-1308.
- [51]Fletcher PC, Henson RN: Frontal lobes and human memory: insights from functional neuroimaging. Brain 2001, 124(Pt 5):849-881.
- [52]Wilson BA, Baddeley A, Evans J, Shiel A: Errorless learning in the rehabilitation of memory impaired people. Neuropsychol Rehab 1994, 4:307-326.
- [53]Johnson MK: Memory and reality. Am Psychol 2006, 61(8):760-771.
- [54]Johnson MK, Hashtroudi S, Lindsay DS: Source monitoring. Psychol Bull 1993, 114(1):3-28.
- [55]Wixted JT, Mickes L: A continuous dual-process model of remember/know judgments. Psychol Rev 2010, 117(4):1025-1054.
- [56]Henson RN, Goshen-Gottstein Y, Ganel T, Otten LJ, Quayle A, Rugg MD: Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cereb Cortex 2003, 13(7):793-805.
- [57]Rugg MD, Fletcher PC, Chua PM, Dolan RJ: The role of the prefrontal cortex in recognition memory and memory for source: an fMRI study. Neuroimage 1999, 10(5):520-529.
- [58]Genovese CR, Lazar NA, Nichols T: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002, 15(4):870-878.