期刊论文详细信息
BMC Cardiovascular Disorders
The role of p21-activated kinase in the initiation of atherosclerosis
M A Schwartz1  J Sanders2  J Chernoff3  P Debnath2  K A Jhaveri2 
[1] Yale Cardiovascular Research Center, 300 George St., New Haven, CT 06511, USA;Department of Microbiology, University of Virginia, Cardiovascular Research Center, Charlottesville, Virginia, USA;Division of Oncology Research, Fox Chase Cancer Center, Buckingham, Pennsylvania, USA
关键词: Fibronectin;    Vascular inflammation;    Endothelial cells;    Fluid shear stress;   
Others  :  1084721
DOI  :  10.1186/1471-2261-12-55
 received in 2012-03-09, accepted in 2012-07-23,  发布年份 2012
PDF
【 摘 要 】

Background

p21-activated kinase (PAK) has been implicated in the inflammatory activation of endothelial cells by disturbed fluid shear stress, which is the initiating stimulus in atherosclerosis. The study addresses whether PAK1 contributes to inflammatory marker expression in endothelial cells at atherosclerosis-susceptible regions of arteries in vivo.

Method

Aortas from WT and PAK1-/- C57BL/6J mice on a normal chow diet were fixed, dissected and processed for immunohistochemistry using a panel of inflammatory markers. We visualized and quantified staining in the endothelium at the greater and lesser curvatures of the arch of aorta, as atherosclerosis-resistant and susceptible regions, respectively.

Results

Fibronectin, VCAM-1 and the activated RelA NF-κB subunit were localized to the lesser curvature and decreased in PAK1-/- mice. The activated RelB NF-κB subunit was also localized to the lesser curvature but was increased in PAK1-/- mice. Low levels of staining for ICAM-1 and the monocyte/macrophage marker Mac2 indicated that overall inflammation in this tissue was minimal.

Conclusion

These data show that PAK1 has a significant pro-inflammatory function at atherosclerosis-prone sites in vivo. These effects are seen in young mice with very low levels of inflammation, suggesting that inflammatory activation of the endothelium is primarily biomechanical. Activation involves NF-κB, expression of leukocyte recruitment receptors and fibronectin deposition. These results support and extend in vitro studies demonstrating that PAK contributes to activation of inflammatory pathways in endothelial cells by fluid shear stress.

【 授权许可】

   
2012 Jhaveri et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113163812319.pdf 1576KB PDF download
Figure 6. 59KB Image download
Figure 5. 64KB Image download
Figure 4. 76KB Image download
Figure 3. 94KB Image download
Figure 2. 58KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Caro CG, Fitz-Gerald JM, Schroter RC: Arterial wall shear and distribution of early atheroma in man. Nature 1969, 223(5211):1159-60.
  • [2]Glagov S, Zarins C, Giddens DP, Ku DN: Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988, 112(10):1018-31.
  • [3]Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr: Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A 2001, 98(8):4478-85.
  • [4]Helmlinger G, Geiger RV, Schreck S, Nerem RM: Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 1991, 113(2):123-31.
  • [5]Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP: Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J Biomech Eng 1995, 117(2):203-10.
  • [6]Paigen B, Ishida BY, Verstuyft J, et al.: Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 1990, 10:316-323.
  • [7]Hahn C, Schwartz MA: Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 2009, 10(1):53-62.
  • [8]Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L: Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 2011, 214(2):249-256.
  • [9]Hofmann C, Shepelev M, Chernoff J: The genetics of Pak. J Cell Sci 2004, 117:4343-4354.
  • [10]Jaffer ZM, Chernoff J: p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 2002, 34(7):713-7.
  • [11]Bokoch GM: Biology of the p21-activated kinases. Annu Rev Biochem 2003, 72:743-81.
  • [12]Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ, Blackman BR, Schwartz MA: Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J Cell Biol 2007, 176(5):719-27.
  • [13]Orr AW, Hahn C, Blackman BR, Schwartz MA: p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circ Res 2008, 103(6):671.
  • [14]Hahn C, Orr AW, Sanders JM, Jhaveri KA, Schwartz MA: The subendothelial extracellular matrix modulates JNK activation by flow. Circ Res 2009, 104(8):995-1003.
  • [15]Sechler JL, Corbett SA, Wenk MB, Schwarzbauer JE: Modulation of cell-extracellular matrix interactions. Ann N Y Acad Sci 1998, 857:143-54.
  • [16]Tan MH, Sun Z, Opitz SL, Schmidt TE, Peters JH, George EL: Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 2004, 104(1):11-18.
  • [17]Babaev VR, Porro F, Linton MF, Fazio S, Baralle FE, Muro AF: Absence of regulated splicing of fibronectin EDA exon reduces atherosclerosis in mice. Atherosclerosis 2008, 197(2):534-40.
  • [18]Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I, Carlquist JF, Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Diemert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elosua R, Engert JC, Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer J, Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C, Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJ, Khaw KT, Knowles JW, Kolovou G, Kong A, Laaksonen R, Lambrechts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, Mannucci PM, Maouche S, Martinelli N, McKeown PP, Meisinger C, Meitinger T, Melander O, Merlini PA, Mooser V, Morgan T, Mühleisen TW, Muhlestein JB, Münzel T, Musunuru K, Nahrstaedt J, Nelson CP, Nöthen MM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F, Qu L, Quyyumi AA, Rader DJ, Rallidis LS, Rice C, Rosendaal FR, Rubin D, Salomaa V, Sampietro ML, Sandhu MS, Schadt E, Schäfer A, Schillert A, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS, Sivananthan M, Sivapalaratnam S, Smith A, Smith TB, Snoep JD, Soranzo N, Spertus JA, Stark K, Stirrups K, Stoll M, Tang WH, Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitterlinden AG, van Rij AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, Wild PS, Willenborg C, Witteman JC, Wright BJ, Ye S, Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA, Quertermous T, März W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS, Deloukas P, Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U, O'Donnell CJ, McPherson R, Erdmann J, Samani NJ, Cardiogenics CARDIoGRAM Consortium: Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011, 43(4):333-8.
  • [19]Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA: The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 2005, 169(1):191-202.
  • [20]Weih F, Warr G, Yang H, Bravo R: Multifocal defects in immune responses in RelB-deficient mice. J Immunol 1997, 158(11):5211-8.
  文献评价指标  
  下载次数:53次 浏览次数:17次