期刊论文详细信息
BMC Microbiology
New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide
Jian-Zhong Shao1  Li-Xin Xiang1  Shi-Hua Hu1  Guan Zhu2  Cen-Cen Sun1  Wei-Ren Dong1 
[1] Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People’s Republic of China;Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX, USA
关键词: Pyridine nucleotide cycles;    Salvage pathway;    Nicotinamide riboside;    Purine nucleoside phosphorylase;   
Others  :  1141996
DOI  :  10.1186/1471-2180-14-29
 received in 2013-12-11, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

Background

In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide.

Results

Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation.

Conclusions

Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested.

【 授权许可】

   
2014 Dong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327192033421.pdf 936KB PDF download
Figure 5. 57KB Image download
Figure 4. 68KB Image download
Figure 3. 56KB Image download
Figure 2. 39KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Foster JW, Moat AG: Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 1980, 44(1):83-105.
  • [2]Belenky P, Bogan KL, Brenner C: NAD + metabolism in health and disease. Trends Biochem Sci 2007, 32(1):12-19.
  • [3]Abd Elmageed ZY, Naura AS, Errami Y, Zerfaoui M: The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cell Signal 2012, 24(1):1-8.
  • [4]Stevens LA, Levine RL, Gochuico BR, Moss J: ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine. Proc Natl Acad Sci USA 2009, 106(47):19796-19800.
  • [5]Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR: LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 2009, 5(12):879-881.
  • [6]Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T: DNA ligases: structure, reaction mechanism, and function. Chem Rev 2006, 106(2):687-699.
  • [7]Rich PR: The molecular machinery of Keilin's respiratory chain. Biochem Soc Trans 2003, 31(Pt 6):1095-1105.
  • [8]Anderson RM, Latorre-Esteves M, Neves AR, Lavu S, Medvedik O, Taylor C, Howitz KT, Santos H, Sinclair DA: Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 2003, 302(5653):2124-2126.
  • [9]Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000, 97(11):5807-5811.
  • [10]Jayaram HN, Kusumanchi P, Yalowitz JA: NMNAT expression and its relation to NAD metabolism. Curr Med Chem 2011, 18(13):1962-1972.
  • [11]Donmez G, Guarente L: Aging and disease: connections to sirtuins. Aging Cell 2010, 9(2):285-290.
  • [12]Borradaile NM, Pickering JG: NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des 2009, 15(1):110-117.
  • [13]Sauve AA: NAD + and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther 2008, 324(3):883-893.
  • [14]Magni G, Orsomando G, Raffelli N, Ruggieri S: Enzymology of mammalian NAD metabolism in health and disease. Front Biosci 2008, 13:6135-6154.
  • [15]Longo VD, Kennedy BK: Sirtuins in aging and age-related disease. Cell 2006, 126(2):257-268.
  • [16]Li F, Chong ZZ, Maiese K: Cell Life versus cell longevity: the mysteries surrounding the NAD + precursor nicotinamide. Curr Med Chem 2006, 13(8):883-895.
  • [17]Lin SJ, Guarente L: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 2003, 15(2):241-246.
  • [18]Zhang LY, Liu LY, Qie LL, Ling KN, Xu LH, Wang F, Fang SH, Lu YB, Hu H, Wei EQ, et al.: Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase. Eur J Pharmacol 2012, 674(2–3):163-170.
  • [19]Khan JA, Forouhar F, Tao X, Tong L: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 2007, 11(5):695-705.
  • [20]Bieganowski P, Pace HC, Brenner C: Eukaryotic NAD + synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 2003, 278(35):33049-33055.
  • [21]Ozment C, Barchue J, DeLucas LJ, Chattopadhyay D: Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis. J Struct Biol 1999, 127(3):279-282.
  • [22]Belenky P, Christensen KC, Gazzaniga F, Pletnev AA, Brenner C: Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. J Biol Chem 2009, 284(1):158-164.
  • [23]Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 2007, 129(3):473-484.
  • [24]Bieganowski P, Brenner C: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD + in fungi and humans. Cell 2004, 117(4):495-502.
  • [25]Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL: Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol 2006, 188(8):3012-3023.
  • [26]Kurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY, Osterman AL: Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 2002, 184(24):6906-6917.
  • [27]Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S: Enzymology of NAD + homeostasis in man. Cell Mol Life Sci 2004, 61(1):19-34.
  • [28]Houtkooper RH, Canto C, Wanders RJ, Auwerx J: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010, 31(2):194-223.
  • [29]Bogan KL, Brenner C: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD + precursor vitamins in human nutrition. Annu Rev Nutr 2008, 28:115-130.
  • [30]Burkle A: Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 2001, 23(9):795-806.
  • [31]Michels PA, Avilan L: The NAD + metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD + salvage, offers prospects for development of anti-parasite chemotherapy. Mol Microbiol 2011, 82(1):4-8.
  • [32]Gallo CM, Smith DL Jr, Smith JS: Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol 2004, 24(3):1301-1312.
  • [33]Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002, 277(47):45099-45107.
  • [34]Virag L, Szabo C: The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002, 54(3):375-429.
  • [35]Koszalka GW, Vanhooke J, Short SA, Hall WW: Purification and properties of inosine-guanosine phosphorylase from Escherichia coli K-12. J Bacteriol 1988, 170(8):3493-3498.
  • [36]Seeger C, Poulsen C, Dandanell G: Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol 1995, 177(19):5506-5516.
  • [37]Dandanell G, Szczepanowski RH, Kierdaszuk B, Shugar D, Bochtler M: Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene. J Mol Biol 2005, 348(1):113-125.
  • [38]Wielgus-Kutrowska B, Kulikowska E, Wierzchowski J, Bzowska A, Shugar D: Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases. Eur J Biochem 1997, 243(1–2):408-414.
  • [39]Pardee AB, Benz EJ Jr, St Peter DA, Krieger JN, Meuth M, Trieshmann HW Jr: Hyperproduction and purification of nicotinamide deamidase, a microconstitutive enzyme of Escherichia coli. J Biol Chem 1971, 246(22):6792-6796.
  • [40]Imsande J: Pathway of diphosphopyridine nucleotide biosynthesis in Escherichia coli. J Biol Chem 1961, 236:1494-1497.
  • [41]Hammer-Jespersen K, Buxton RS, Hansen TD: A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine. Mol Gen Genet 1980, 179(2):341-348.
  • [42]Martin PR, Shea RJ, Mulks MH: Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol 2001, 183(4):1168-1174.
  • [43]Tempel W, Rabeh WM, Bogan KL, Belenky P, Wojcik M, Seidle HF, Nedyalkova L, Yang T, Sauve AA, Park HW, et al.: Nicotinamide riboside kinase structures reveal new pathways to NAD+. PLoS Biol 2007, 5(10):e263.
  • [44]Kang GB, Bae MH, Kim MK, Im I, Kim YC, Eom SH: Crystal structure of Rattus norvegicus Visfatin/PBEF/Nampt in complex with an FK866-based inhibitor. Mol Cells 2009, 27(6):667-671.
  • [45]Nahimana A, Attinger A, Aubry D, Greaney P, Ireson C, Thougaard AV, Tjornelund J, Dawson KM, Dupuis M, Duchosal MA: The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies. Blood 2009, 113(14):3276-3286.
  • [46]Khan JA, Tao X, Tong L: Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 2006, 13(7):582-588.
  • [47]Esposito E, Impellizzeri D, Mazzon E, Fakhfouri G, Rahimian R, Travelli C, Tron GC, Genazzani AA, Cuzzocrea S: The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. J Neuroinflammation 2012, 9:66. BioMed Central Full Text
  • [48]Holen K, Saltz LB, Hollywood E, Burk K, Hanauske AR: The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest New Drugs 2008, 26(1):45-51.
  • [49]Hasmann M, Schemainda I: FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 2003, 63(21):7436-7442.
  • [50]Clinch K, Evans GB, Frohlich RF, Furneaux RH, Kelly PM, Legentil L, Murkin AS, Li L, Schramm VL, Tyler PC, et al.: Third-generation immucillins: syntheses and bioactivities of acyclic immucillin inhibitors of human purine nucleoside phosphorylase. J Med Chem 2009, 52(4):1126-1143.
  • [51]Khan JA, Xiang S, Tong L: Crystal structure of human nicotinamide riboside kinase. Structure 2007, 15(8):1005-1013.
  • [52]Foster JW: Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide adenine dinucleotide glycohydrolase, nicotinamide mononucleotide glycohydrolase, and nicotinamide adenine dinucleotide pyrophosphatase activities. J Bacteriol 1981, 145(2):1002-1009.
  • [53]Dong WR, Xiang LX, Shao JZ: Novel antibiotic-free plasmid selection system based on complementation of host auxotrophy in the NAD de novo synthesis pathway. Appl Environ Microbiol 2010, 76(7):2295-2303.
  • [54]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97(12):6640-6645.
  • [55]Rowen JW, Kornberg A: The phosphorolysis of nicotinamide riboside. J Biol Chem 1951, 193(2):497-507.
  • [56]Yamada K, Hara N, Shibata T, Osago H, Tsuchiya M: The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Biochem 2006, 352(2):282-285.
  文献评价指标  
  下载次数:14次 浏览次数:5次