期刊论文详细信息
BMC Developmental Biology
Protein interactions of the transcription factor Hoxa1
René Rezsohazy4  Marc Vidal2  Jean-Claude Twizere1  Nicolas Simonis3  Isabelle Bergiers4  Sophie Remacle4  Julie Vandeputte4  Barbara Lambert4 
[1] GIGA-R and Gembloux Agro Bio-Tech, Université de Liège, Liège, 4000, Belgium;Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA;Bioinformatique des Génomes et des Réseaux (BiGRe), Université libre de Bruxelles, Bruxelles, Belgium;Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
关键词: Interactome;    ORFeome;    Hoxa1;    Hox;   
Others  :  1086444
DOI  :  10.1186/1471-213X-12-29
 received in 2012-10-16, accepted in 2012-10-16,  发布年份 2012
PDF
【 摘 要 】

Background

Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins.

Results

To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments.

Conclusions

The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.

【 授权许可】

   
2012 Lambert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116011936433.pdf 1641KB PDF download
Figure 4. 49KB Image download
Figure 3. 90KB Image download
Figure 2. 84KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Alexander T, Nolte C, Krumlauf R: Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2009, 25:431-456.
  • [2]Iimura T, Denans N, Pourquie O: Establishment of Hox vertebral identities in the embryonic spine precursors. Curr Top Dev Biol 2009, 88:201-234.
  • [3]Narita Y, Rijli FM: Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 2009, 88:139-167.
  • [4]Wellik DM: Hox patterning of the vertebrate axial skeleton. Dev Dyn 2007, 236(9):2454-2463.
  • [5]Mann R, Lelli K, Joshi R: Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009, 88:63-101.
  • [6]Gehring WJ, Kloter U, Suga H: Evolution of the Hox gene complex from an evolutionary ground state. Curr Top Dev Biol 2009, 88:35-61.
  • [7]Cillo C, Faiella A, Cantile M, Boncinelli E: Homeobox genes and cancer. Exp Cell Res 1999, 248(1):1-9.
  • [8]Mark M, Rijli FM, Chambon P: Homeobox genes in embryogenesis and pathogenesis. Pediatr Res 1997, 42(4):421-429.
  • [9]Hassan M, Saini S, Gordon J, van Wijnen A, Montecino M, Stein J, Stein G, Lian J: Molecular switches involving homeodomain proteins, HOXA10 and RUNX2 regulate osteoblastogenesis. Cells Tissues Organs 2009, 189(1–4):122-125.
  • [10]Moens C, Selleri L: Hox cofactors in vertebrate development. Dev Biol 2006, 291(2):193-206.
  • [11]Zhu A, Kuziora MA: Homeodomain interaction with the beta subunit of the general transcription factor TFIIE. J Biol Chem 1996, 271(35):20993-20996.
  • [12]Um M, Li C, Manley JL: The transcriptional repressor even-skipped interacts directly with TATA-binding protein. Mol Cell Biol 1995, 15(9):5007-5016.
  • [13]Chen Y, Knezevic V, Ervin V, Hutson R, Ward Y, Mackem S: Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development 2004, 131(10):2339-2347.
  • [14]Kataoka K, Yoshitomo-Nakagawa K, Shioda S, Nishizawa M: A set of Hox proteins interact with the Maf oncoprotein to inhibit its DNA binding, transactivation, and transforming activities. J Biol Chem 2001, 276(1):819-826.
  • [15]Bai S, Shi X, Yang X, Cao X: Smad6 as a transcriptional corepressor. J Biol Chem 2000, 275(12):8267-8270.
  • [16]Li X, Nie S, Chang C, Qiu T, Cao X: Smads oppose Hox transcriptional activities. Exp Cell Res 2006, 312(6):854-864.
  • [17]Zappavigna V, Falciola L, Helmer-Citterich M, Mavilio F, Bianchi ME: HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J 1996, 15(18):4981-4991.
  • [18]Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V: CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene 1999, 18(27):4007-4014.
  • [19]Shen W, Chrobak D, Krishnan K, Lawrence HJ, Largman C: HOXB6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. J Biol Chem 2004, 279(38):39895-39904.
  • [20]Saleh M, Rambaldi I, Yang X-J, Featherstone MS: Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol Cell Biol 2000, 20(22):8623-8633.
  • [21]Topisirovic I, Kentsis A, Perez JM, Guzman ML, Jordan CT, Borden KLB: Eukaryotic Translation Initiation Factor 4E Activity Is Modulated by HOXA9 at Multiple Levels. Mol Cell Biol 2005, 25(3):1100-1112.
  • [22]Derossi D, Joliot AH, Chassaing G, Prochiantz A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994, 269(14):10444-10450.
  • [23]Brunet I, Di Nardo A, Sonnier L, Beurdeley M, Prochiantz A: The topological role of homeoproteins in the developing central nervous system. Trends Neurosci 2007, 30(6):206-207.
  • [24]Chisaka O, Musci TS, Capecchi MR: Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 1992, 355(6360):516-520.
  • [25]Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P: Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 1991, 66(6):1105-1119.
  • [26]Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO, Lobie PE: Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 2003, 278(9):7580-7590.
  • [27]Lamesch P, Li N, Milstein S, Fan C, Hao T, Szabo G, Hu Z, Venkatesan K, Bethel G, Martin P, Rogers J, Lawlor S, McLaren S, Dricot A, Borick H, Cusick ME, Vandenhaute J, Dunham I, Hill DE, Vidal M: hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 2007, 89(3):307-315.
  • [28]Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437(7062):1173-1178.
  • [29]Dreze M, Monachello D, Lurin C, Cusick ME, Hill DE, Vidal M, Braun P: High-quality binary interactome mapping. Methods Enzymol 2010, 470:281-315.
  • [30]Fernandez CC, Gudas L: The truncated Hoxa1 protein interacts with Hoxa1 and Pbx1 in stem cells. J Cell Biochem 2009, 106(3):427-443.
  • [31]Phelan ML, Featherstone MS: Distinct HOX N-terminal arm residues are responsible for specificity of DNA recognition by HOX monomers and HOX·PBX heterodimers. J Biol Chem 1997, 272(13):8635-8643.
  • [32]Phelan ML, Rambaldi I, Featherstone MS: Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol 1995, 15(8):3989-3997.
  • [33]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [34]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al.: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36(Database):D480-D484.
  • [35]Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, et al.: An empirical framework for binary interactome mapping. Nat Methods 2009, 6(1):83-90.
  • [36]Lee NK, Lee SY: Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol 2002, 35(1):61-66.
  • [37]Lee SY, Choi Y: TRAF1 and its biological functions. Adv Exp Med Biol 2007, 597:25-31.
  • [38]Dempsey PW, Doyle SE, He JQ, Cheng G: The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003, 14(3–4):193-209.
  • [39]Li L, Bin L, Li F, Liu Y, Chen DC, Zhai Z, Shu H: TRIP6 is a RIP2-associated common signaling component of multiple NF-kappaB activation pathways. J Cell Sci 2005, 118(Pt3):555-563.
  • [40]Mahul-Mellier A-L, Strappazzon F, Petiot A, Chatellard-Causse C, Torch S, Blot B, Freeman K, Kuhn L, Garin J, Verna J-M, et al.: Alix and ALG-2 Are Involved in Tumor Necrosis Factor Receptor 1-induced Cell Death. J Biol Chem 2008, 283(50):34954-34965.
  • [41]Odorizzi G: The multiple personalities of Alix. J Cell Sci 2006, 119(Pt 15):3025-3032.
  • [42]Mason J, Morrison D, Basson M, Licht J: Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2006, 16(1):45-54.
  • [43]Cabrita MA, Christofori G: Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008, 11(1):53-62.
  • [44]Schmidt MH, Hoeller D, Yu J, Furnari FB, Cavenee WK, Dikic I, Bogler O: Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex. Mol Cell Biol 2004, 24(20):8981-8993.
  • [45]Stasyk T, Schiefermeier N, Skvortsov S, Zwierzina H, Peranen J, Bonn GK, Huber LA: Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics. Mol Cell Proteomics 2007, 6(5):908-922.
  • [46]Lennartsson J, Wardega P, Engström U, Hellman U, Heldin C-H: Alix Facilitates the Interaction between c-Cbl and Platelet-derived Growth Factor Î2-Receptor and Thereby Modulates Receptor Down-regulation. J Biol Chem 2006, 281(51):39152-39158.
  • [47]Sangadala S, Boden SD, Viggeswarapu M, Liu Y, Titus L: LIM Mineralization Protein-1 Potentiates Bone Morphogenetic Protein Responsiveness via a Novel Interaction with Smurf1 Resulting in Decreased Ubiquitination of Smads. J Biol Chem 2006, 281(25):17212-17219.
  • [48]Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q: Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucl Acids Res 2006, 34(21):6314-6326.
  • [49]Lipsky BP, Beals CR, Staunton DE: Leupaxin is a novel LIM domain protein that forms a complex with PYK2. J Biol Chem 1998, 273(19):11709-11713.
  • [50]Pan S, Wang R, Zhou X, Corvera J, Kloc M, Sifers R, Gallick GE, Lin SH, Kuang J: Extracellular Alix regulates integrin-mediated cell adhesions and extracellular matrix assembly. EMBO J 2008, 27(15):2077-2090.
  • [51]Pan S, Wang R, Zhou X, He G, Koomen J, Kobayashi R, Sun L, Corvera J, Gallick GE, Kuang J: Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly. J Biol Chem 2006, 281(45):34640-34650.
  • [52]Cabezas A, Bache KG, Brech A, Stenmark H: Alix regulates cortical actin and the spatial distribution of endosomes. J Cell Sci 2005, 118(Pt 12):2625-2635.
  • [53]Bai C-Y, Ohsugi M, Abe Y, Yamamoto T: ZRP-1 controls Rho GTPase-mediated actin reorganization by localizing at cell-matrix and cell-cell adhesions. J Cell Sci 2007, 120(16):2828-2837.
  • [54]Liang X, Sun Y, Schneider J, Ding J-H, Cheng H, Ye M, Bhattacharya S, Rearden A, Evans S, Chen J: Pinch1 Is Required for Normal Development of Cranial and Cardiac Neural Crest-Derived Structures. Circ Res 2007, 100(4):527-535.
  • [55]Trokovic N, Trokovic R, Partanen J: Fibroblast growth factor signalling and regional specification of the pharyngeal ectoderm. Int J Dev Biol 2005, 49(7):797-805.
  • [56]Gerber WV, Yatskievych TA, Antin PB, Correia KM, Conlon RA, Krieg PA: The RNA-binding protein gene, hermes, is expressed at high levels in the developing heart. Mech Dev 1999, 80(1):77-86.
  • [57]Makki N, Capecchi MR: Hoxa1 lineage tracing indicates a direct role for Hoxa1 in the development of the inner ear, the heart, and the third rhombomere. Dev Biol 2010, 341(2):499-509.
  • [58]Ivins S, Pemberton K, Guidez F, Howell L, Krumlauf R, Zelent A: Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene 2003, 22(24):3685-3697.
  • [59]Gambetta MC, Oktaba K, Muller J: Essential Role of the Glycosyltransferase Sxc/Ogt in Polycomb Repression. Science 2009, 325(5936):93-96.
  • [60]Remacle S, Shaw-Jackson C, Matis C, Lampe X, Picard J, Rezsohazy R: Changing homeodomain residues 2 and 3 of Hoxa1 alters its activity in a cell-type and enhancer dependent manner. Nucleic Acids Res 2002, 30(12):2663-2668.
  • [61]Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, et al.: Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 2009, 37(Database):D619-D622.
  文献评价指标  
  下载次数:15次 浏览次数:7次