期刊论文详细信息
BMC Gastroenterology
Protective role of 1,25(OH)2vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice
Xiaolan Zhang1  David Q Shih2  Chenyang Li3  Jian Guo1  Lei Liu1  Hui Li1  Hui Wu1  Hong Zhang1  Hongwei Zhao1 
[1] Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No.215 Heping West Road, 050000, Shijiazhuang, China;Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA;Hebei Medical University, No.361 Zhongshan East Road, 050017, Shijiazhuang, China
关键词: 1,25-dihydroxyvitamin D3;    Tight junction;    Inflammatory bowel disease;    Dextran sulfate sodium;    Barrier protection function;   
Others  :  1113060
DOI  :  10.1186/1471-230X-12-57
 received in 2012-02-04, accepted in 2012-04-15,  发布年份 2012
PDF
【 摘 要 】

Background

Intestinal hyper-permeability plays a critical role in the etiopathogenesis of inflammatory bowel disease (IBD) by affecting the penetration of pathogens, toxic compounds and macromolecules. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, has been shown to be an important regulator of IBD and recent epidemiology suggests that patients with IBD have an impaired vitamin D status. The purpose of this study is to investigate the possible protective effects of 1,25(OH)2D3 on mucosal injury and epithelial barrier disruption on dextran sulfate sodium (DSS)-induced acute colitis model.

Methods

We used DSS-induced acute colitis model to investigate the protective effects of 1,25(OH)2D3 on mucosal injury and epithelial barrier integrity. Severity of colitis was evaluated by disease activity index (DAI), body weight (BW) change, colon length, histology, myeloperoxidase (MPO) activity, and proinflammatory cytokine production including tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). In vitro the protective role of 1,25(OH)2D3 was assessed by incubating Caco-2 cells with or without DSS and measuring transepithelial electrical resistance (TEER) and fluorescein isothiocyanate dextran (FITC-D). The intestinal permeability was analyzed by FITC-D, bacterial translocation and measurement of lipopolysaccharide (LPS). Ultrastructural features of the colon tissue and Caco-2 cell monolayer were observed by electron microscopy. Expressions of tight junction (TJ) proteins in the colon mucosa and Caco-2 cells were detected by immunohistochemistry, immunofluorescence, Western blot and real-time fluorescent quantitative PCR, respectively.

Results

DSS-induced acute colitis model was characterized by a reduced BW, AUC of BW, serum calcium, higher DAI, AUC of DAI, shortened colon length, elevated MPO activity, worsened histologic inflammation, increased mononuclear cell numbers in mesenteric lymph nodes (MLNs) and colonic lamina propria (LP), and enhanced proteins and mRNA levels of TNF-α and IFN-γ. 1,25(OH)2D3 markedly increased expressions of TJ proteins and mRNA and decreased the FITC-D permeability and the level of LPS. Furthermore, 1,25(OH)2D3 abrogated bacterial translocation to MLNs and ameliorated ultrastructural features of the colon epithelium by scanning electron microscopy (SEM). In vitro, 1,25(OH)2D3 increased TEER, TJ proteins and mRNA expressions, decreased the FITC-D permeability, and preserved structural integrity of the TJ in Caco-2 cells.

Conclusions

1,25(OH)2D3 may play a protective role in mucosal barrier homeostasis by maintaining the integrity of junction complexes and in healing capacity of the colon epithelium. 1,25(OH)2D3 may represent an attractive and novel therapeutic agent for the adjuvant therapy of IBD.

【 授权许可】

   
2012 zhao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150204012242295.pdf 936KB PDF download
Figure 5. 142KB Image download
Figure 4. 161KB Image download
Figure 3. 120KB Image download
Figure 2. 88KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Aoyagi Y, Nagata S, Kudo T, Fujii T, Wada M, Chiba Y, Ohtsuka Y, Yamashiro Y, Shimizu T, Ohkusa T: Peroxisome proliferator-activated receptor gamma 2 mutation may cause a subset of ulcerative colitis. Pediatr Int 2010, 52:729-734.
  • [2]Matricon J, Barnich N, Ardid D: Immunopathogenesis of inflammatory bowel disease. Self Nonself 2010, 1:299-309.
  • [3]Gibson PR: Increased gut permeability in Crohn’s disease: is TNF the link? Gut 2004, 53:1724-1725.
  • [4]McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G: Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009, 15:100-113.
  • [5]Turner JR: Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009, 9:799-809.
  • [6]Hering NA, Schulzke JD: Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis 2009, 27:450-454.
  • [7]Koch S, Nusrat A: Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann N Y Acad Sci 2009, 1165:220-227.
  • [8]Naydenov NG, Hopkins AM, Ivanov AI: c-Jun N-terminal kinase mediates disassembly of apical junctions in model intestinal epithelia. Cell Cycle 2009, 8:2110-2121.
  • [9]Hashimoto K, Oshima T, Tomita T, Kim Y, Matsumoto T, Joh T, Miwa H: Oxidative stress induces gastric epithelial permeability through claudin-3. Biochem Biophys Res Commun 2008, 376:154-157.
  • [10]Diesing AK, Nossol C, Panther P, Walk N, Post A, Kluess J, Kreutzmann P, Danicke S, Rothkotter HJ, Kahlert S: Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 2011, 200:8-18.
  • [11]Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, Urzua U, Quest AF, Olea N, Perez P, Castro I, Barrera MJ, Romo R, Hermoso M, Leyton C, Gonzalez MJ: Disruption of tight junction structure in salivary glands from Sjogren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum 2010, 62:1280-1289.
  • [12]Severson EA, Kwon M, Hilgarth RS, Parkos CA, Nusrat A: Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating occludin, claudin-1 and E-cadherin expression. Biochem Biophys Res Commun 2010, 397:592-597.
  • [13]Fillon S, Robinson ZD, Colgan SP, Furuta GT: Epithelial function in eosinophilic gastrointestinal diseases. Immunol Allergy Clin North Am 2009, 29:171-178.
  • [14]George MD, Wehkamp J, Kays RJ, Leutenegger CM, Sabir S, Grishina I, Dandekar S, Bevins CL: In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics 2008, 9:209. BioMed Central Full Text
  • [15]Ramakrishna BS: Probiotic-induced changes in the intestinal epithelium: implications in gastrointestinal disease. Trop Gastroenterol 2009, 30:76-85.
  • [16]Laverny G, Penna G, Vetrano S, Correale C, Nebuloni M, Danese S, Adorini L: Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. Immunol Lett 2010, 131:49-58.
  • [17]Bruce D, Yu S, Ooi JH, Cantorna MT: Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol 2011, 23:519-528.
  • [18]Ardizzone S, Cassinotti A, Bevilacqua M, Clerici M, Porro GB: Vitamin D and inflammatory bowel disease. Vitam Horm 2011, 86:367-377.
  • [19]Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC: Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 2008, 294:208-216.
  • [20]von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C: Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol 2010, 11:344-349.
  • [21]Sun J: Vitamin D and mucosal immune function. Curr Opin Gastroenterol 2010, 26:591-595.
  • [22]Froicu M, Cantorna MT: Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol 2007, 8:5. BioMed Central Full Text
  • [23]Froicu M, Weaver V, Wynn TA, McDowell MA, Welsh JE, Cantorna MT: A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol 2003, 17:2386-2392.
  • [24]Kamen DL, Tangpricha V: Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med 2010, 88:441-450.
  • [25]Cantorna MT: Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc 2010, 69:286-289.
  • [26]Adams JS, Hewison M: Update in vitamin D. J Clin Endocrinol Metab 2010, 95:471-478.
  • [27]Onsonby AL, Lucas RM, van der Mei IA: UVR, vitamin D and three autoimmune diseases--multiple sclerosis, type 1 diabetes, rheumatoid arthritis. Photochem Photobiol 2005, 81:1267-1275.
  • [28]Goertz B, Fassbender WJ, Williams JC, Marzeion AM, Bretzel RG, Stracke H, Berliner MN: Vitamin D receptor genotypes are not associated with rheumatoid arthritis or biochemical parameters of bone turnover in German RA patients. Clin Exp Rheumatol 2003, 21:333-339.
  • [29]Cantorna MT, Munsick C, Bemiss C, Mahon BD: 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 2000, 130:2648-2652.
  • [30]Cooper HS, Murthy SN, Shah RS, Sedergran DJ: Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993, 69:238-249.
  • [31]Shimizu T, Suzuki T, Yu HP, Yokoyama Y, Choudhry MA, Bland KI, Chaudry IH: The role of estrogen receptor subtypes on hepatic neutrophil accumulation following trauma-hemorrhage: direct modulation of CINC-1 production by Kupffer cells. Cytokine 2008, 43:88-92.
  • [32]Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M: Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 2009, 109:113-123.
  • [33]Plevy SE, Landers CJ, Prehn J, Carramanzana NM, Deem RL, Shealy D, Targan SR: A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 1997, 159:6276-6282.
  • [34]Nagy JA, Herzberg KT, Masse EM, Zientara GP, Dvorak HF: Exchange of macromolecules between plasma and peritoneal cavity in ascites tumor-bearing, normal, and serotonin-injected mice. Cancer Res 1989, 49:5448-5458.
  • [35]Tschugguel W, Zhegu Z, Gajdzik L, Maier M, Binder BR, Graf J: High precision measurement of electrical resistance across endothelial cell monolayers. Pflugers Arch 1995, 430:145-147.
  • [36]Park EJ, Thomson AB, Clandinin MT: Protection of intestinal occludin tight junction protein by dietary gangliosides in lipopolysaccharide-induced acute inflammation. J Pediatr Gastroenterol Nutr 2010, 50:321-328.
  • [37]Chichlowski M, Westwood GS, Abraham SN, Hale LP: Role of mast cells in inflammatory bowel disease and inflammation-associated colorectal neoplasia in IL-10-deficient mice. PLoS One 2010, 17:e12220.
  • [38]McCall IC, Betanzos A, Weber DA, Nava P, Miller GW, Parkos CA: Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicol Appl Pharmacol 2009, 241:61-70.
  • [39]Suzuki T, Yoshinaga N, Tanabe S: IL-6 regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 2011. Jul 19 M111.238147
  • [40]Johnson CS, Muindi JR, Hershberger PA, Trump DL: The antitumor efficacy of calcitriol: preclinical studies. Anticancer Res 2006, 26:2543-2549.
  • [41]McKenna LB, Schug J, Vourekas A, McKenna JB, Bramswig NC, Friedman JR, Kaestner KH: MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 2010, 139:1654-1664.
  • [42]Mayol JM, Adame-Navarrete Y, Alarma-Estrany P, Molina-Roldan E, Huete-Toral F, Fernandez-Represa JA: Luminal oxidants selectively modulate electrogenic ion transport in rat colon. World J Gastroenterol 2006, 12:5523-5527.
  • [43]Ohira M, Oshitani N, Hosomi S, Watanabe K, Yamagami H, Tominaga K, Watanabe T, Fujiwara Y, Maeda K, Hirakawa K, Arakawa T: Dislocation of Rab13 and vasodilator-stimulated phosphoprotein in inactive colon epithelium in patients with Crohn’s disease. Int J Mol Med 2009, 24:829-835.
  • [44]Oshitani N, Watanabe K, Nakamura S, Fujiwara Y, Higuchi K, Arakawa T: Dislocation of tight junction proteins without F-actin disruption in inactive Crohn’s disease. Int J Mol Med 2005, 15:407-410.
  • [45]Qin H, Zhang Z, Hang X, Jiang Y: L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 2009, 9:63. BioMed Central Full Text
  文献评价指标  
  下载次数:13次 浏览次数:0次