期刊论文详细信息
BMC Research Notes
De novo assembly and characterization of the transcriptome in the desiccation-tolerant moss Syntrichia caninervis
Andrew J Wood2  Honglan Yang1  Xiaoshuang Li2  Daoyuan Zhang1  Bei Gao3 
[1] Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;Department of Plant Biology, Southern Illinois University-Carbondale, Carbondale 62901-6509, IL, USA;University of Chinese Academy of Sciences, Beijing 100049, China
关键词: Transcriptome;    Syntrichia;    Stress;    Physcomitrella;    Desiccation;    Biological soil crust;   
Others  :  1131750
DOI  :  10.1186/1756-0500-7-490
 received in 2014-07-15, accepted in 2014-07-24,  发布年份 2014
PDF
【 摘 要 】

Background

Syntrichia caninervis is a desiccation-tolerant moss and the dominant bryophyte of the Biological Soil Crusts (BSCs) found in the Mojave and Gurbantunggut deserts. Next generation high throughput sequencing technologies offer an efficient and economic choice for characterizing non-model organism transcriptomes with little or no prior molecular information available.

Results

In this study, we employed next generation, high-throughput, Illumina RNA-Seq to analyze the poly-(A) + mRNA from hydrated, dehydrating and desiccated S. caninervis gametophores. Approximately 58.0 million paired-end short reads were obtained and 92,240 unigenes were assembled with an average size of 493 bp, N50 value of 662 bp and a total size of 45.48 Mbp. Sequence similarity searches against five public databases (NR, Swiss-Prot, COSMOSS, KEGG and COG) found 54,125 unigenes (58.7%) with significant similarity to an existing sequence (E-value ≤ 1e-5) and could be annotated. Gene Ontology (GO) annotation assigned 24,183 unigenes to the three GO terms: Biological Process, Cellular Component or Molecular Function. GO comparison between P. patens and S. caninervis demonstrated similar sequence enrichment across all three GO categories. 29,370 deduced polypeptide sequences were assigned Pfam domain information and categorized into 4,212 Pfam domains/families. Using the PlantTFDB, 778 unigenes were predicted to be involved in the regulation of transcription and were classified into 49 transcription factor families. Annotated unigenes were mapped to the KEGG pathways and further annotated using MapMan. Comparative genomics revealed that 44% of protein families are shared in common by S. caninervis, P. patens and Arabidopsis thaliana and that 80% are shared by both moss species.

Conclusions

This study is one of the first comprehensive transcriptome analyses of the moss S. caninervis. Our data extends our knowledge of bryophyte transcriptomes, provides an insight to plants adapted to the arid regions of central Asia, and continues the development of S. caninervis as a model for understanding the molecular aspects of desiccation-tolerance.

【 授权许可】

   
2014 Gao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150303053256393.pdf 1538KB PDF download
Figure 6. 184KB Image download
Figure 5. 91KB Image download
Figure 4. 90KB Image download
Figure 3. 46KB Image download
Figure 2. 104KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Belnap J: The world at your feet: desert biological soil crusts. Front Ecol Environ 2003, 1(4):181-189.
  • [2]Pointing SB, Belnap J: Microbial colonization and controls in dryland systems. Nat Rev Microbiol 2012, 10(8):551-562.
  • [3]Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A: Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 2013, 7(11):2178-2191.
  • [4]Belnap J, Büdel B, Lange OL: Biological soil crusts: characteristics and distribution. In Biological Soil Crusts: Structure, Function, and Management, vol. 150. Edited by Belnap J, Lange O. Berlin Heidelberg: Springer; 2003:3-30.
  • [5]Belnap J, Gillette DA: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 1998, 39(2):133-142.
  • [6]Oliver MJ, Velten J, Mishler BD: Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 2005, 45(5):788-799.
  • [7]Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD: Desiccation-tolerance in bryophytes: a review. Bryologist 2007, 110(4):595-621.
  • [8]Oliver M, Tuba Z, Mishler B: The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 2000, 151(1):85-100.
  • [9]Wood AJ: The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist 2007, 110(2):163-177.
  • [10]Bewley JD: Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 1979, 30(1):195-238.
  • [11]Oliver MJ, Derek Bewley J: Desiccation-tolerance of plant tissues: a mechanistic overview. In Horticultural Reviews. Oxford, UK: John Wiley & Sons, Inc; 2010:171-213.
  • [12]Stark LR, Brinda JC, McLetchie DN, Oliver MJ: Extended periods of hydration Do Not elicit dehardening to desiccation tolerance in regeneration trials of the moss Syntrichia caninervis. Int J Plant Sci 2012, 173(4):333-343.
  • [13]Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH: The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 2007, 68(4):599-610.
  • [14]Wu N, Zhang YM, Downing A, Zhang J, Yang C: Membrane stability of the desert moss Syntrichia caninervis Mitt. during desiccation and rehydration. J Bryol 2012, 34(1):1-8.
  • [15]Zheng Y, Xu M, Zhao J, Zhang B, Bei S, Hao L: Morphological adaptations to drought and reproductive strategy of the moss Syntrichia caninervis in the gurbantunggut desert. China Arid Land Res Manag 2011, 25(2):116-127.
  • [16]Li Y, Wang Z, Xu T, Tu W, Liu C, Zhang Y, Yang C: Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration. J Plant Physiol 2010, 167(16):1390-1397.
  • [17]Platt KA, Oliver MJ, Thomson WW: Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity. Protoplasma 1994, 178(1–2):57-65.
  • [18]Proctor MCF, Ligrone R, Duckett JG: Desiccation tolerance in the moss polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 2007, 99(1):75-93.
  • [19]Proctor MCF, Smirnoff N: Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 2000, 51(351):1695-1704.
  • [20]Wu N, Zhang Y-m, Downing A, Aanderud ZT, Tao Y, Williams S: Rapid adjustment of leaf angle explains how the desert moss, Syntrichia caninervis, copes with multiple resource limitations during rehydration. Funct Plant Biol 2014, 41(2):168.
  • [21]Xu S-J, Jiang P-A, Wang Z-W, Wang Y: Crystal structures and chemical composition of leaf surface wax depositions on the desert moss Syntrichia caninervis. Biochem Syst Ecol 2009, 37(6):723-730.
  • [22]Stark LR, McLetchie DN, Roberts SP: Gender differences and a new adult eukaryotic record for upper thermal tolerance in the desert moss Syntrichia caninervis. J Therm Biol 2009, 34(3):131-137.
  • [23]Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS: The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb Protoc 2009, 2009(2):pdb.emo115.
  • [24]Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, et al.: The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008, 319(5859):64-69.
  • [25]Wood AJ, Duff RJ: The Aldehyde Dehydrogenase (ALDH) gene Superfamily of the Moss Physcomitrella patens and the algae Chlamydomonas reinhardtii and Ostreococcus tauri. Bryologist 2009, 112(1):1-11.
  • [26]Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL: Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 2010, 153(3):1398-1412.
  • [27]Koduri PK, Gordon GS, Barker EI, Colpitts CC, Ashton NW, Suh DY: Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Mol Biol 2010, 72(3):247-263.
  • [28]Barker EI, Ashton NW: A parsimonious model of lineage-specific expansion of MADS-box genes in Physcomitrella patens. Plant Cell Rep 2013, 32(8):1161-1177.
  • [29]Koster K, Balsamo R, Espinoza C, Oliver M: Desiccation sensitivity and tolerance in the moss Physcomitrella patens: assessing limits and damage. Plant Growth Regul 2010, 62(3):293-302.
  • [30]Liu M, Shi J, Lu C: Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. BMC Plant Biol 2013, 13(1):88.
  • [31]Zhao Z, Tan L, Dang C, Zhang H, Wu Q, An L: Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant. Chorispora bungeana. BMC Plant Biol 2012, 12(1):222.
  • [32]Xiao L, Wang H, Wan P, Kuang T, He Y: Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens. BMC Plant Biol 2011, 11:177.
  • [33]Xiao L, Zhang L, Yang G, Zhu H, He Y: Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens. PLoS One 2012, 7(4):e35961.
  • [34]Sharma N, Bhalla PL, Singh MB: Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort. Marchantia polymorpha. BMC Genomics 2013, 14:915.
  • [35]Liu S, Wang N, Zhang P, Cong B, Lin X, Wang S, Xia G, Huang X: Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss. Extremophiles 2013, 17(3):391-403.
  • [36]Oliver M, Dowd S, Zaragoza J, Mauget S, Payton P: The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 2004, 5(1):89.
  • [37]Wood AJ, Duff RJ, Oliver MJ: Expressed sequence tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol 1999, 40(4):361-368.
  • [38]Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 11(1):31-46.
  • [39]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 2008, 5(7):621-628.
  • [40]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [41]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 2011, 29(7):644-652.
  • [42]O’Neil S, Dzurisin J, Carmichael R, Lobo N, Emrich S, Hellmann J: Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics 2010, 11(1):310.
  • [43]Zimmer A, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing S, Reski R: Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 2013, 14(1):498.
  • [44]Pallavicini A, Canapa A, Barucca M, Alf Ldi J, Biscotti MA, Buonocore F, De Moro G, Di Palma F, Fausto AM, Forconi M, Gerdol M, Makapedua DM, Turner-Meier J, Olmo E, Scapigliati G: Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genomics 2013, 14(1):538.
  • [45]Xu J, Ji P, Wang B, Zhao L, Wang J, Zhao Z, Zhang Y, Li J, Xu P, Sun X: Transcriptome sequencing and analysis of wild Amur Ide (Leuciscus waleckii) inhabiting an extreme alkaline-saline lake reveals insights into stress adaptation. PLoS One 2013, 8(4):e59703.
  • [46]Ewen-Campen B, Shaner N, Panfilio KA, Suzuki Y, Roth S, Extavour CG: The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics 2011, 12:61.
  • [47]Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M: Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proc Natl Acad Sci 2003, 100(13):8007-8012.
  • [48]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [49]Lang D, Zimmer AD, Rensing SA, Reski R: Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 2008, 13(10):542-549.
  • [50]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40(D1):D290-D301.
  • [51]Lehti-Shiu MD, Shiu S-H: Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc B: Biol Sci 2012, 367(1602):2619-2639.
  • [52]Xu C, Min J: Structure and function of WD40 domain proteins. Protein Cell 2011, 2(3):202-214.
  • [53]Torii KU: Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 2004, 234:1-46.
  • [54]Mizutani M, Ohta D: Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 2010, 61:291-315.
  • [55]Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E: Plant ABC transporters. The Arabidopsis Book/American Society of Plant Biologists 2011, 9:e0153.
  • [56]Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R: Functions of ABC transporters in plants. Essays Biochem 2011, 50(1):145-160.
  • [57]Jin J, Zhang H, Kong L, Gao G, Luo J: PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 2014, 42(D1):D1182-D1187.
  • [58]Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 2006, 140(2):411-432.
  • [59]Mitsuda N, Hisabori T, Takeyasu K, Sato MH: VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana. Plant Cell Physiol 2004, 45(7):845-854.
  • [60]Yasui Y, Mukougawa K, Uemoto M, Yokofuji A, Suzuri R, Nishitani A, Kohchi T: The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis. Plant Cell 2012, 24(8):3248-3263.
  • [61]Nakai Y, Nakahira Y, Sumida H, Takebayashi K, Nagasawa Y, Yamasaki K, Akiyama M, Ohme-Takagi M, Fujiwara S, Shiina T, Mitsuda N, Fukusaki E, Kubo Y, Sato MH: Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Plant J 2013, 73(5):761-775.
  • [62]Putterill J, Robson F, Lee K, Simon R, Coupland G: The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80(6):847-857.
  • [63]Griffiths S, Dunford RP, Coupland G, Laurie DA: The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 2003, 131(4):1855-1867.
  • [64]Zobell O, Coupland G, Reiss B: The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol (Stuttg) 2005, 7(3):266-275.
  • [65]Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ Jr: Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Current protocols in bioinformatics/editoral board, Andreas DB[et al] 2011. Chapter 6:Unit 6 12 11-19
  • [66]Oliver M, Wood A, O’Mahony P: How some plants recover from vegetative desiccation: a repair based strategy. Acta Physiol Plant 1997, 19(4):419-425.
  • [67]Velten J, Oliver MJ: Tr288, a rehydrin with a dehydrin twist. Plant Mol Biol 2001, 45(6):713-722.
  • [68]Zeng Q, Chen X, Wood AJ: Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. J Exp Bot 2002, 53(371):1197-1205.
  • [69]Chen X, Zeng Q, Wood AJ: Aldh7B6 encodes a turgor-responsive aldehyde dehydrogenase homologue that is constitutively expressed in tortula ruralis gametophytes. Bryologist 2002, 105(2):177-184.
  • [70]Chen X, Qin Z, Wood AJ: The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family. J Plant Physiol 2002, 159(7):677-684.
  • [71]Chen X, Kanokporn T, Zeng Q, Wilkins TA, Wood AJ: Characterization of the V-type H((+))-ATPase in the resurrection plant Tortula ruralis: accumulation and polysomal recruitment of the proteolipid c subunit in response to salt-stress. J Exp Bot 2002, 53(367):225-232.
  • [72]Triwitayakorn K, Wood A: Characterisation of two desiccation-stress related cDNAs TrDr1 and TrDr2 in the resurrection moss Tortula ruralis. S Afr J Bot 2002, 68(4):545-548.
  • [73]Peng CA, Oliver MJ, Wood AJ: Is the Rehydrin TrDr3 from Tortula ruralis associated with tolerance to cold, salinity, and reduced pH? Physiological evaluation of the TrDr3-orthologue, HdeD from Escherichia coli in response to abiotic stress. Plant Biol (Stuttg) 2005, 7(3):315-320.
  • [74]Yang H, Zhang D, Wang J, Wood AJ, Zhang Y: Molecular cloning of a stress-responsive aldehyde dehydrogenase gene ScALDH21 from the desiccation-tolerant moss Syntrichia caninervis and its responses to different stresses. Mol Biol Rep 2012, 39(3):2645-2652.
  • [75]Zhang J, Wu K, Zeng S, Teixeira da Silva J, Zhao X, Tian C-E, Xia H, Duan J: Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics 2013, 14(1):279.
  • [76]Patel RK, Jain M: NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012, 7(2):e30619.
  • [77]Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-1967.
  • [78]Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc/Int Conf Intell Syst Mol Biol; ISMB Int Conf Intell Syst Mol Biol 1999, 138-148.
  • [79]Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J: WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 2006, 34(Web Server issue):W293-W297.
  • [80]Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 2005, 21(16):3448-3449.
  • [81]Eddy SR: A new generation of homology search tools based on probabilistic inference. Genome Inform 2009, 23(1):205-211.
  • [82]Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 7(10):e1002195.
  • [83]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(Database issue):D109-D114.
  • [84]Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 2004, 37(6):914-939.
  • [85]Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M: Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 2005, 138(3):1195-1204.
  • [86]Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B: Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, cell & environment 2014, 37(5):1250-1258.
  • [87]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  文献评价指标  
  下载次数:7次 浏览次数:11次