期刊论文详细信息
BMC Nephrology
Bilirubin attenuates the renal tubular injury by inhibition of oxidative stress and apoptosis
Ho Jun Chin2  Suhnggwon Kim2  Dong Wan Chae4  Ki Young Na4  Sejoong Kim4  Eun Seong Lee1  Se Won Oh3 
[1] Department of Internal Medicine, Seoul National University Bundang Hospital, Kyeong-Kido, Korea;Renal Institute, Seoul National University Medical Research Center, Seoul, Korea;Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul, Korea;Department of Internal Medicine, Seoul National University, Seoul, Korea
关键词: Renal injury;    Oxidative stress;    Cyclosporine;    Bilirubin;    Apoptosis;   
Others  :  1082934
DOI  :  10.1186/1471-2369-14-105
 received in 2012-03-18, accepted in 2013-04-24,  发布年份 2013
PDF
【 摘 要 】

Background

Bilirubin (BIL) has been recognized as an endogenous antioxidant that shows a protective effect for cardiorenal diseases. We investigated whether administration of BIL had a protective effect on cyclosporine (CsA)-induced nephropathy (CIN), and examined the effects of BIL on the oxidative stress and apoptosis.

Methods

BIL was pretreated intraperitoneally three times for a week (60 mg/kg), and CsA was injected for 4 weeks (15 mg/kg/day, subcutaneous). Proximal tubular epithelial (HK2) cells were pretreated with 0.1mg/ml of BIL for 24 hours, and then treated with 20 μM of CsA for another 24 hours.

Results

CsA induced marked increases in urine kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) concentrations (P < 0.05). BIL reduced urine Kim-1 in CIN (P < 0.05), while urine NGAL exhibited a decreasing tendency. In CsA-treated rat kidneys, the protein expression of NOX4 and p22phox was reduced by BIL (P < 0.05). BIL ameliorated CsA-induced arteriolopathy, tubulointerstitial fibrosis, tubular injury, and the apoptosis examined by TUNEL assay (P < 0.01). In HK2 cells, BIL reduced intracellular reactive oxygen species in CsA-treated cells. CsA increased the protein expression of bax, cleaved caspase-9, caspase-3 and the activity of caspase-3; however, the anti-apoptotic bcl-2 protein was reduced. These changes were recovered by BIL (P < 0.05).

Conclusions

The direct administration of BIL protected against CsA-induced tubular injury via inhibition of oxidative stress and apoptosis.

【 授权许可】

   
2013 Oh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224190705338.pdf 3121KB PDF download
Figure 9. 32KB Image download
Figure 8. 25KB Image download
Figure 7. 132KB Image download
Figure 6. 108KB Image download
Figure 5. 25KB Image download
Figure 4. 224KB Image download
Figure 3. 100KB Image download
Figure 2. 13KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Schwertner HA, Jackson WG, Tolan G: Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin Chem 1994, 40:18-23.
  • [2]Kimm H, Yun JE, Jo J, Jee SH: Low serum bilirubin level as an independent predictor of stroke incidence: a prospective study in Korean men and women. Stroke 2009, 40:3422-3427.
  • [3]Perlstein TS, Pande RL, Beckman JA, Creager MA: Serum total bilirubin level and prevalent lower extremity peripheral arterial disease: National Health and Nutrition Examination Survey (NHANES) 1999 to 2004. Arterioscler Thromb Vasc Biol 2008, 28:166-172.
  • [4]Adin CA, Croker BP, Agarwal A: Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 2005, 288:F778-F784.
  • [5]Fujii M, Inoguchi T, Sasaki S, Maeda Y, Zheng J, Kobayashi K, Takayanagi R: Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int 2010, 78:905-919.
  • [6]Goodman AI, Olszanecki R, Yang LM, Quan S, Li M, Omura S, Stec DE, Abraham NG: Heme oxygenase-1 protects against radiocontrast-induced acute kidney injury by regulating anti-apoptotic proteins. Kidney Int 2007, 72:945-953.
  • [7]Lin JP, Vitek L, Schwertner HA: Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardiovascular disease. Clin Chem 2010, 56:1535-1543.
  • [8]Stocker R: Induction of haem oxygenase as a defence against oxidative stress. Free Radic Res Commun 1990, 9:101-112.
  • [9]Abraham NG, Kappas A: Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 2005, 39:1-25.
  • [10]Lanone S, Bloc S, Foresti R, Almolki A, Taillé C, Callebert J, Conti M, Goven D, Aubier M, Dureuil B, El-Benna J, Motterlini R, Boczkowski J: Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J 2005, 19:1890-1892.
  • [11]Mazza F, Goodman A, Lombardo G, Vanella A, Abraham NG: Heme oxygenase-1 gene expression attenuates angiotensin II-mediated DNA damage in endothelial cells. Exp Biol Med (Maywood) 2003, 228:576-583.
  • [12]Kim DS, Chae SW, Kim HR, Chae HJ: CO and bilirubin inhibit doxorubicin-induced cardiac cell death. Immunopharmacol Immunotoxicol 2009, 31:64-70.
  • [13]Sue YM, Cheng CF, Chou Y, Chang CC, Lee PS, Juan SH: Ectopic overexpression of haem oxygenase-1 protects kidneys from carboplatin-mediated apoptosis. Br J Pharmacol 2011, 162:1716-1730.
  • [14]Pérez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, Bonventre JV, Gamba G, Bobadilla NA: Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 2007, 292:F131-F139.
  • [15]Bertocchio JP, Warnock DG, Jaisser F: Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int 2011, 79:1051-1060.
  • [16]Pérez de Lema G, Arribas I, Prieto A, Parra T, de Arriba G, Rodríguez-Puyol D, Rodríguez-Puyol M: Cyclosporin A-induced hydrogen peroxide synthesis by cultured human mesangial cells is blocked by exogenous antioxidants. Life Sci 1998, 62:1745-1753.
  • [17]Khan M, Shobha JC, Mohan IK, Rao Naidu MU, Prayag A, Kutala VK: Spirulina attenuates cyclosporine-induced nephrotoxicity in rats. J Appl Toxicol 2006, 26:444-451.
  • [18]Vetter M, Chen ZJ, Chang GD, Che D, Liu S, Chang CH: Cyclosporin A disrupts bradykinin signaling through superoxide. Hypertension 2003, 41:1136-1142.
  • [19]Park JW, Bae EH, Kim IJ, Ma SK, Choi C, Lee J, Kim SW: Paricalcitol attenuates cyclosporine-induced kidney injury in rats. Kidney Int 2010, 77:1076-1085.
  • [20]Xiao Z, Shan J, Li C, Luo L, Feng L, Lu J, Li S, Long D, Li Y: CrmA gene transfer rescued CsA-induced renal cell apoptosis in graft kidney. Cell Immunol 2010, 265:6-8.
  • [21]Xiao Z, Li C, Shan J, Luo L, Feng L, Lu J, Li S, Long D, Li Y: Mechanisms of renal cell apoptosis induced by cyclosporine A: a systematic review of in vitro studies. Am J Nephrol 2011, 33:558-566.
  • [22]Chin HJ, Fu YY, Ahn JM, Na KY, Kim YS, Kim S, Chae DW: Omacor, n-3 polyunsaturated fatty acid, attenuated albuminuria and renal dysfunction with decrease of SREBP-1 expression and triglyceride amount in the kidney of type II diabetic animals. Nephrol Dial Transplant 2010, 25:1450-1457.
  • [23]Urbschat A, Obermüller N, Haferkamp A: Biomarkers of kidney injury. Biomarkers 2011, 16(Suppl 1):S22-S30.
  • [24]Hall IE, Coca SG, Perazella MA, Eko UU, Luciano RL, Peter PR, Han WK, Parikh CR: Risk of Poor Outcomes with Novel and Traditional Biomarkers at Clinical AKI Diagnosis. Clin J Am Soc Nephrol 2011, 6:2740-2749.
  • [25]Haurani MJ, Pagano PJ: Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res 2007, 75:679-689.
  • [26]Sachse A, Wolf G: Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 2007, 18:2439-2446.
  • [27]Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004, 4:181-189.
  • [28]LeBel CP, Ischiropoulos H, Bondy SC: Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992, 5:227-231.
  • [29]Barnes JL, Gorin Y: Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int 2011, 79:944-956.
  • [30]De Miguel C, Guo C, Lund H, Feng D, Mattson DL: Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am J Physiol Renal Physiol 2011, 300:F734-F742.
  • [31]Gill PS, Wilcox CS: NADPH oxidases in the kidney. Antioxid Redox Signal 2006, 8:1597-1607.
  • [32]Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87:245-313.
  • [33]Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y, Sumimoto H: A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 2001, 276:1417-1423.
  • [34]Gorin Y, Ricono JM, Wagner B, Kim NH, Bhandari B, Choudhury GG, Abboud HE: Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem J 2004, 381:231-239.
  • [35]Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, Barnes JL: NAD(P)H oxidase mediates TGFbeta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 2010, 21:93-102.
  • [36]Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG: Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 2006, 18:69-82.
  • [37]Djamali A, Reese S, Hafez O, Vidyasagar A, Jacobson L, Swain W, Kolehmainen C, Huang L, Wilson NA, Torrealba JR: Nox2 is a Mediator of Chronic CsA Nephrotoxicity. Am J Transplant 2012. [Epub ahead of print]
  • [38]Djamali A, Vidyasagar A, Adulla M, Hullett D, Reese S: Nox-2 is a modulator of fibrogenesis in kidney allografts. Am J Transplant 2009, 9:74-82.
  • [39]Denamur S, Tyteca D, Marchand-Brynaert J, Van Bambeke F, Tulkens PM, Courtoy PJ, Mingeot-Leclercq MP: Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radic Biol Med 2011, 51:1656-1665.
  • [40]Sarkar A, Das J, Manna P, Sil PC: Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology 2011, 290:208-217.
  • [41]Kawamura K, Ishikawa K, Wada Y, Kimura S, Matsumoto H, Kohro T, Itabe H, Kodama T, Maruyama Y: Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler Thromb Vasc Biol 2005, 25:155-160.
  • [42]Morimoto K, Ohta K, Yachie A, Yang Y, Shimizu M, Goto C, Toma T, Kasahara Y, Yokoyama H, Miyata T, Seki H, Koizumi S: Cytoprotective role of heme oxygenase (HO)-1 in human kidney with various renal diseases. Kidney Int 2001, 60:1858-1866.
  • [43]Zelenka J, Muchova L, Zelenkova M, Vanova K, Vreman HJ, Wong RJ, Vitek L: Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 2012, 94:1821-1827.
  • [44]Böttinger EP, Bitzer M: TGF-beta signaling in renal disease. J Am Soc Nephrol 2002, 13:2600-2610.
  • [45]Sanz AB, Santamaría B, Ruiz-Ortega M, Egido J, Ortiz A: Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 2008, 19:1634-1642.
  • [46]Justo P, Lorz C, Sanz A, Egido J, Ortiz A: Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis. J Am Soc Nephrol 2003, 14:3072-3080.
  • [47]Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P: Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365:1231-1238.
  • [48]Prozialeck WC, Edwards JR, Lamar PC, Liu J, Vaidya VS, Bonventre JV: Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury. Toxicol Appl Pharmacol 2009, 238:306-314.
  • [49]Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV: Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 2008, 118:1657-1668.
  • [50]Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM: Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest 2008, 118:1468-1478.
  • [51]Sánchez-Pozos K, Lee-Montiel F, Pérez-Villalva R, Uribe N, Gamba G, Bazan-Perkins B, Bobadilla NA: Polymerized type I collagen reduces chronic cyclosporine nephrotoxicity. Nephrol Dial Transplant 2010, 25:2150-2158.
  • [52]Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Michaluk-Skutnik J: Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity? Pediatr Nephrol 2010, 25:889-897.
  文献评价指标  
  下载次数:106次 浏览次数:14次