期刊论文详细信息
BMC Evolutionary Biology
Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of myctophiformes (Neoteleostei)
Masaki Miya4  Mutsumi Nishida2  Gento Shinohara1  Takashi P Satoh1  Hirohiko Takeshima2  David Rees3  Endre Willassen3  Ingvar Byrkjedal3  Jan Y Poulsen3 
[1] National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan;Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan;Natural History Collections, University Museum of Bergen, University of Bergen, Allégaten 41, P.O. Box 7800, Bergen N-5020, Norway;Department of Zoology, Natural History Museum and Institute, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan
关键词: Non-coding sequence;    Gene rearrangements;    Mitogenomics;    Phylogeny;    Neoscopelidae;    Myctophidae;    Myctophiformes;   
Others  :  1087234
DOI  :  10.1186/1471-2148-13-111
 received in 2012-02-17, accepted in 2013-05-20,  发布年份 2013
PDF
【 摘 要 】

Background

A skewed assemblage of two epi-, meso- and bathypelagic fish families makes up the order Myctophiformes – the blackchins Neoscopelidae and the lanternfishes Myctophidae. The six rare neoscopelids show few morphological specializations whereas the divergent myctophids have evolved into about 250 species, of which many show massive abundances and wide distributions. In fact, Myctophidae is by far the most abundant fish family in the world, with plausible estimates of more than half of the oceans combined fish biomass. Myctophids possess a unique communication system of species-specific photophore patterns and traditional intrafamilial classification has been established to reflect arrangements of photophores. Myctophids present the most diverse array of larval body forms found in fishes although this attribute has both corroborated and confounded phylogenetic hypotheses based on adult morphology. No molecular phylogeny is available for Myctophiformes, despite their importance within all ocean trophic cycles, open-ocean speciation and as an important part of neoteleost divergence. This study attempts to resolve major myctophiform phylogenies from both mitogenomic sequences and corroborating evidence in the form of unique mitochondrial gene order rearrangements.

Results

Mitogenomic evidence from DNA sequences and unique gene orders are highly congruent concerning phylogenetic resolution on several myctophiform classification levels, corroborating evidence from osteology, larval ontogeny and photophore patterns, although the lack of larval morphological characters within the subfamily Lampanyctinae stands out. Neoscopelidae is resolved as the sister family to myctophids with Solivomer arenidens positioned as a sister taxon to the remaining neoscopelids. The enigmatic Notolychnus valdiviae is placed as a sister taxon to all other myctophids and exhibits an unusual second copy of the tRNA-Met gene – a gene order rearrangement reminiscent of that found in the tribe Diaphini although our analyses show it to be independently derived. Most tribes are resolved in accordance with adult morphology although Gonichthyini is found within a subclade of the tribe Myctophini consisting of ctenoid scaled species. Mitogenomic sequence data from this study recognize 10 reciprocally monophyletic lineages within Myctophidae, with five of these clades delimited from additional rearranged gene orders or intergenic non-coding sequences.

Conclusions

Mitogenomic results from DNA sequences and unique gene orders corroborate morphology in phylogeny reconstruction and provide a likely scenario for the phylogenetic history of Myctophiformes. The extent of gene order rearrangements found within the mitochondrial genomes of myctophids is unique for phylogenetic purposes.

【 授权许可】

   
2013 Poulsen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023958780.pdf 2252KB PDF download
Figure 7. 27KB Image download
Figure 6. 81KB Image download
Figure 5. 63KB Image download
Figure 4. 122KB Image download
Figure 3. 84KB Image download
Figure 2. 87KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Rosen DE: Interrelationships of higher euteleostean fishes. In Interrelationships of Fishes. Edited by Greenwood PH, Miles RS, Patterson C. London: Academic Press; 1973:397-513.
  • [2]Nelson JS: Fishes of the world. Hoboken, New Jersey: John Wiley & Sons; 2006.
  • [3]Paxton JR: Osteology and relationships of the lanternfishes (family Myctophidae). Bull Nat Hist Mus Los Angeles Cty 1972, 13:1-81.
  • [4]Fraser-Brunner A: A classification of the fishes of the family myctophidae. Proc Zool Soc London 1949, 118:1019-1106.
  • [5]Stiassny MLJ: Basal Ctenosquamate relationships and the interrelationships of the myctophiform (Scopelomorph) fishes. In Interrelationships of Fishes. Edited by Stiassny MLJ, Parenti LR, Johnson GD. San Diego: Academic; 1996:405-426.
  • [6]Bolin RJ: A review of the myctophid fishes of the pacific coast of the unites states and of lower California. Stanford Ichthyological Bull 1939, 1:89-156.
  • [7]Hulley AP: Myctophidae. In Encyclopedia of Fishes 2. Edited by Paxton J, Eschmeyer WN. San Diego: Academic; 1998:127-128.
  • [8]Lawry JV: The olfactory epithelium of the lantern fish, Tarletonbeania crenularis (Myctophidae). Z Zellforsch 1973, 138:31-39.
  • [9]Stanger-Hall KF, Lloyd JE, Hillis DM: Phylogeny of north American fireflies (coleoptera: lampyridae): implications for the evolution of light signals. Mol Phylogenet Evol 2007, 45:33-49.
  • [10]Mensinger AF, Case FJ: Luminescent Properties of fishes from nearshore California Basins. J Exp Biol Ecol 1997, 210:75-90.
  • [11]Widder EA: Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 2010, 328:704-708.
  • [12]Foran: Evidence of luminous bacterial symbionts in the light organs of myctophid and stomiiform fishes. J Evo Zool 1991, 259:1-8.
  • [13]Haygood MG, Edwards DB, Mowlds G, Rosenblatt RH: Bioluminescence of myctophid and stomiiform fishes is not due to bacterial luciferase. J Exp Zool 1994, 270:225-231.
  • [14]Shimomura O: Bioluminescence. Chemical Principles and Methods. World Scientific Publishing Singapore; 2006.
  • [15]Leisman G, Cohn DH, Nealson KH: Bacterial origin of bioluminescence in marine animals. Science 1980, 208:1271-1273.
  • [16]Haygood MG, Distel DL: Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes from unique lineages related to the genus Vibrio. Nature 1993, 363:154-156.
  • [17]Turner JR, White EM, Collins MA, Partridge JC, Douglas RH: Vision in lanternfish (myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep-sea Res 1 2009, 56:1003-1017.
  • [18]Hasegawa EI, Sawada K, Abe K, Watanabe K, Uchikawa K, Okazaki Y, Toyama M, Douglas RH: The Visual pigments of a deep-sea myctophid fish Myctophum nitidulum Garman; an HPLC and spectroscopic description of a non-paired rhodopsin-porphyropsin system. J Fish Biol 2008, 72:937-945.
  • [19]Douglas RH, Partridge JC, Marshall NJ: The eyes of deeep-sea fish 1: Lens pigmentation, tapeta and visual pigments. Prog Retinal Eye Res 1998, 17:597-636.
  • [20]Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A: Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fisheries Oceanography 1999, 8:115-127.
  • [21]Backus RH, Craddock JE, Haedrich RL, Shores DL, Teal JM, Wing AS, Mead GW, Clarke WD: Ceratoscopelus maderensis: peculiar sound-scattering layer identified with this myctophid fish. Science 1968, 160:991-993.
  • [22]Kerfoot WC: Adaptive value of vertical migration: comments on the predation hypothesis and some alternatives. Contrib Mar Sci 1985, 27:91-113.
  • [23]Herring PJ: Species abundance, sexual encounter and bioluminescent signaling in the deep sea. Phil Trans Royal Soc London B 2000, 355:1273-1276.
  • [24]Yamaguchi M: Phylogenetic analyses of myctophid fishes using morphological characters: Progress, problems, and future perspectives. Japanese J Ichthyol 2000, 47:87-107.
  • [25]Wisner RL: A new genus and species of myctophid fish from the South-Central Pacific Ocean, with notes on related genera and the designation of a new tribe, Electronini. Copeia 1963, 1:24-28.
  • [26]Miyake T, Uyeno T: The urodermals in lanternfish family myctophidae (Pisces: myctophiformes). Copeia 1987, 1:176-181.
  • [27]Moser HG, Ahlstrom EH: Development of lanternfishes (family myctophidae) in the California current. Part 1. Species with narrow-eyed larvae. Bull Nat Hist Mus Los Angeles Cty 1970, 7:1-145.
  • [28]Moser HG, Ahlstrom EH: Development of the lanternfish, Scopelopsis multipunctatus Brauer 1906, with a discussion of its phylogenetic position in the family Myctophidae and its Role in a proposed mechanism for the evolution of photophore patterns in lanternfishes. Fish Bull 1972, 70:541-564.
  • [29]Moser HG, Ahlstrom EH: Role of larval stages in systematic investigations of marine teleosts: a case study. Fish Bull 1974, 72:391-413.
  • [30]Paxton J, Ahlstrom EH, Moser HG: Myctophidae: relationships. In Ontogeny and Systematics of Fishes. Special Publication 1, ASIH; 1984:239-244.
  • [31]Yamaguchi M, Miya M, Okiyama M, Nishida M: Molecular phylogeny and larval morphological diversity of the lanternfish genus Hygophum (Teleostei: Myctophidae). Mol Phylogenet Evol 2000, 15:103-114.
  • [32]Miya M, Nishida M: Speciation in the open ocean. Nature 1997, 389:803-804.
  • [33]Miya M, Kawaguchi A, Nishida M: Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 2001, 18:1993-2009.
  • [34]Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG: Sequence and organization of the human mitochondrial genome. Nature 1981, 290:457-465.
  • [35]Boore JL: Animal mitochondrial genomes. Nuc Acids Res 1999, 27:1767-1780.
  • [36]Boore JL, Brown WM: Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opinion in Gen Dev 1998, 8:668-674.
  • [37]Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ: Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 1997, 14:91-104.
  • [38]Moritz C, Brown WM: Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA 1987, 84:7183-7187.
  • [39]Boore JL: The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In Computational Biology Series Volume 1. Edited by Sankoff D, Nadeau J. Dordrecht (The Netherlands): Kluwer Academic Publishing; 2000:133-147.
  • [40]Mindell DP, Sorenson MD, Dimcheff DE: Multiple independent origins of mitochondrial gene order in birds. Proc Nat Acad Sci 1998, 95:10693-10697.
  • [41]Lavrov DV, Boore JL, Brown WM: Complete mtDNA Sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 2002, 19:163-169.
  • [42]Personal webpage Jan Yde Poulsen. http://jypichthyology.info webcite
  • [43]Ishiguro NB, Miya M, Nishida M: Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol 2003, 27:476-488.
  • [44]Miya M, Nishida M: Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 2000, 17:437-455.
  • [45]Miya M, Nishida M: Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar Biotech 1999, 1:416-426.
  • [46]Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M: Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 2003, 26:121-138.
  • [47]Miya M, Pietsch TW, Orr JW, Arnold RJ, Satoh TP, Shedlock AM, Ho H-C, Shimazaki M, Yabe M, Nishida M: Evolutionary history of anglerfishes (Teleostei:Lophiiformes): A mitogenomic perspective. BMC Evol Biol 2010, 10:58. BioMed Central Full Text
  • [48]Satoh TP, Miya M, Endo H, Nishida M: Round and pointed-head grenadier fishes (Actinopterygii: Gadiformes) represent a single sister group: evidence from the complete mitochondrial genome sequences. Mol Phylogenet Evol 2006, 40:129-138.
  • [49]Cheng S, Higuchi R, Stoneking M: Complete mitochondrial genome amplification. Nat Gen 1994, 7:350-351.
  • [50]4peaks version 1.7.2. http://www.mekentosj.com/science/4peaks webcite
  • [51]TextWrangler version 3.5.3. http://barebones.com/products/textwrangler webcite
  • [52]Maddison DR, Maddison WP: MacClade Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
  • [53]Sequencher version 4.10.1. http://genecodes.com webcite
  • [54]NCBI. http://www.ncbi.nlm.nih.gov webcite
  • [55]Lowe TM, Eddy SR: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [56]Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005, 33:686-689.
  • [57]Löytynoja A, Milinkovitch MC: A hidden Markov model for progressive multiple alignment. Bioinformatics 2003, 19:1505-1513.
  • [58]Lanfear R, Calcott B, Ho SYW, Guindon S: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 2012, 29:1695-1701.
  • [59]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
  • [60]Stamatakis A: Phylogenetic models of rate heterogeneity: a high performance computing perspective. Proc IPDPS 2006.
  • [61]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [62]Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994, 39:306-314.
  • [63]Akaike H: A new look at the statistical model identification. IEEE Trans Automatic Control 1974, 19:716-723.
  • [64]Schwarz GE: Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
  • [65]Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO: Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 2006, 6:29. BioMed Central Full Text
  • [66]Adachi J, Hasegawa M: Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 1996, 42:459-468.
  • [67]Ronquist F, Huelsenbeck JP: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [68]Kumar S, Skjæveland Å, Russell RJS, Enger P, Ruden T, Mevik BH, Burki F, Botnen A, Shalchian-Tabrizi K: AIR: A batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinformatics 2009, 10:357. BioMed Central Full Text
  • [69]Rambaut A, Drummond AJ: Tracer version 1.5. http://tree.bio.ed.ac.uk/software/tracer webcite
  • [70]Smith C, Heyne S, Richter AS, Will S, Backofen R: Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA. Nucleic Acids Res 2010, 38:373-377.
  • [71]Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R: RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 2006, 22:500-503.
  • [72]Darty K, Denise A, Ponty Y: VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25:1974-1975.
  • [73]Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002, 51:492-508.
  • [74]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17:1246-1247.
  • [75]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org webcite
  • [76]Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A: Structure of a ribonucleic acid. Science 1965, 147:1462-1465.
  • [77]Miya M, Satoh TP, Nishida M: The Phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 mitochondrial genome sequences. Bio J Linn Soc 2005, 85:289-306.
  • [78]Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL: Resolution of ray-finned fish phylogeny and timing of diversification. PNAS 2012, 109:13698-13703.
  • [79]Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 2004, 21:1095-1109.
  • [80]Lartillot N, Lepage T, Blanquart S: Phylobayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25:2286-2288.
  • [81]Miyashita T, Fujita K: Two series of parapophyses in neoscopelid fishes (Teleostei: Myctophiformes). Ichthyol Res 2000, 47:143-148.
  • [82]Schwarzhans W: Otolith-morphology and its usage for higher systematical units, with special reference to the Myctophiformes s.l. Meded Tert Kwart Geol 1978, 15:167-185.
  • [83]Rosen DE: An essay on euteleostean classification. Am Mus Novit 1985, 2827:1-45.
  • [84]Miller RR: A new genus and species of deep-sea fish of the family Myctophidae from the Philippine Islands. Proc US Nat Mus 1947, 97:81-90.
  • [85]Bolin RL: Interim account of family myctophidae. In fishes of the Western North Atlantic. Mem Sears Foundation Mar Res 1 1966, 5:190-191.
  • [86]Herring PJ, Morin JG: Bioluminescence in fishes. In Bioluminescence in action. Edited by Herring PJ. London: Academic; 1978:273-329.
  • [87]Smith L, Smith KR, Wheeler WC: Mitochondrial intergenic spacer in fairy basslets (Serranidae: Anthiinae) and the simultaneous analysis of nucleotide and rearrangement data. Am Mus Novit 2009, 3652:1-10.
  • [88]Ahlstrom EH, Moser HG, O’Toole M: Development and distribution of larvae and early juveniles of the commercial lanternfish, Lampanyctodes hectoris (günther), off the west coast of southern Africa with a discussion of phylogenetic relationships of the genus. Bull Southern California Acad Sci 1976, 75:138-152.
  • [89]Nafpaktitis BG: Systematics and distribution of lanternfishes of the genera Lobianchia and Diaphus (Myctophidae) in the Indian Ocean. Bull Nat His Mus Los Angeles County 1978, 30:1-92.
  • [90]Nafpaktitis BG: Taxonomy and distribution of the lanternfishes, genera Lobianchia and Diaphus, in the North Atlantic. Dana-Report 1968, 73:1-134.
  • [91]Kawaguchi K, Shimizu H: Taxonomy and distribution of the lanternfishes, genus Diaphus (Pisces, Myctophidae) in the Western Pacific, Eastern Indian Oceans and the Southeast Asian Seas. Bull Ocean Res Inst Univ Tokyo 1978, 10:1-142.
  • [92]Bolin RL: Iniomi. Myctophidae from the “Michael sars” north Atlantic deep-Sea expedition. Rept Sci Res “Michael Sars” Deep-Sea Expd 1910 1959, 4:1-45.
  • [93]Nafpaktitis BG, Paxton JR: Idiolychnus, a new genus of Myctophidae based on Diaphus urolampus. Copeia 1978, 3:492-497.
  • [94]Hubbs CL, Wisner RL: Parvilux, a new genus of myctophid fishes from the northeastern Pacific, with two new species. Zool Mededelingen 1964, 39:445-463.
  • [95]Macey JR, Papenfuss TJ, Kuehl JV, Fourcade HM, Boore JL: Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol Phylogenet Evol 2004, 33:22-31.
  • [96]Nafpaktitis BG, Paxton JR: Review of the lanternfish genus Lampadena with a description of a new species. Contributions Sci 1968, 138:1-29.
  • [97]Paxton JR: Nominal genera and species of lanternfishes (Family Myctophidae). Contributions Sci Nat Hist Mus Los Angeles County 1979, 322:1-28.
  • [98]Coleman LR, Nafpaktitis BG: Dorsadena yaquinae, a new species and genus of myctophid fish from the Eastern North Pacific Ocean. Contributions Sci 1972, 225:1-11.
  • [99]Davy B: A Review of the lanternfish genus Taaningichthys (family Myctophidae) with the description of a new species. Fish Bull 1972, 70:67-78.
  • [100]Hulley PA: Preliminary investigations on the evolution of the tribe Electronini (Myctophiformes, Myctophidae). In Fishes of Antarctica: A Biological Overview. Edited by Prisco GD, Pisano E, Clarke A. Milano: Springer; 1998:75-86.
  • [101]Kawaguchi K, Aioi K: Myctophid fishes of the genus Myctophum in the Pacific and Indian Oceans. J Oceanographical Soc Japan 1972, 28:161-175.
  • [102]Bekker VE, Borodulina OD: New species of lanternfish of the genus Myctophum (Myctophidae, Pisces). Voprosy Ikhtiologii 1971, 11:418-426.
  • [103]Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M: Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol 2004, 59:287-297.
  • [104]Zhou Y, Zhang JY, Zheng RQ, Yu BG, Yang G: Complete nucleotide sequence and gene organization of the mitochondrial genome of Paa spinosa (Anura: Ranoidae). Gene 2009, 447:86-96.
  • [105]Inoue JG, Miya M, Tsukamoto K, Nishida M: Evolution of the deep-sea gulper eel mitochondrial genomes: Large-scale gene rearrangements originated within the eels. Mol Biol Evol 2003, 20:1917-1924.
  • [106]Mauro DS, Gower DJ, Zardoya R, Wilkinson M: A Hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Bio Evol 2006, 23:227-234.
  • [107]Desjardins P, Morais R: Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J Mol Biol 1990, 212:599-634.
  • [108]Mueller RL, Boore JL: Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol 2005, 22:2104-2112.
  • [109]Bakke IG, Shields F, Johansen S: Sequence characterization of a unique intergenic spacer in Gadiformes mitochondrial DNA. Mar Biotech 1999, 1:411-415.
  • [110]Kumazawa Y, Ota H, Nishida M, Ozawa T: Gene Rearrangements in snake mitochondrial genomes: Highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 1996, 13:1242-1254.
  • [111]Kurabayashi A, Sumida M, Yonekawa H, Glaw F, Vences M, Hasegawa M: Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar. Mol Biol Evol 2008, 25:874-891.
  • [112]Kumazawa Y, Endo H: Mitochondrial genome of the komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Res 2004, 11:115-125.
  • [113]Okajima Y, Kumazawa Y: Mitochondrial genomes of acrodont lizards: Timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 2010, 10:141. BioMed Central Full Text
  • [114]Satoh TP, Sato Y, Masuyama N, Miya M, Nishida M: Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: A new insight into gene order conservation. BMC Genomics 2010, 11:479. BioMed Central Full Text
  文献评价指标  
  下载次数:29次 浏览次数:5次