期刊论文详细信息
BMC Genetics
Genomic prediction of trait segregation in a progeny population: a case study of Japanese pear (Pyrus pyrifolia)
Toshiya Yamamoto1  Toshihiro Saito1  Norio Takada1  Shingo Terakami1  Takeshi Hayashi3  Hiroyoshi Iwata2 
[1] NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Ibaraki, 305-8605, Tsukuba, Japan;Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-8657, Tokyo, Japan;NARO Agricultural Research Center, 3-1-1 Kannondai, Ibaraki, 305-8666, Tsukuba, Japan
关键词: Ordinal categorical scores;    Genome-wide markers;    Markov Chain Monte Carlo (MCMC);    Bayesian modeling;    Segregation simulation;    Selection of a parental combination;    Genomic selection;   
Others  :  1086702
DOI  :  10.1186/1471-2156-14-81
 received in 2013-02-15, accepted in 2013-09-05,  发布年份 2013
PDF
【 摘 要 】

Background

In cross breeding, it is important to choose a good parental combination that has high probability of generating offspring with desired characteristics. This study examines a method for predicting the segregation of target traits in a progeny population based on genome-wide markers and phenotype data of parental cultivars.

Results

The proposed method combines segregation simulation and Bayesian modeling for genomic selection. Marker segregation in a progeny population was simulated based on parental genotypes. Posterior marker effects sampled via Markov Chain Monte Carlo were used to predict the segregation pattern of target traits. The posterior distribution of the proportion of progenies that fulfill selection criteria was calculated and used for determining a promising cross and the necessary size of the progeny population. We applied the proposed method to Japanese pear (Pyrus pyrifolia Nakai) data to demonstrate the method and to show how it works in the selection of a promising cross. Verification using an actual breeding population suggests that the segregation of target traits can be predicted with reasonable accuracy, especially in a highly heritable trait. The uncertainty in predictions was reflected on the posterior distribution of the proportion of progenies that fulfill selection criteria. A simulation study based on the real marker data of Japanese pear cultivars also suggests the potential of the method.

Conclusions

The proposed method is useful to provide objective and quantitative criteria for choosing a parental combination and the breeding population size.

【 授权许可】

   
2013 Iwata et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116014430685.pdf 812KB PDF download
Figure 6. 59KB Image download
Figure 5. 22KB Image download
Figure 4. 70KB Image download
Figure 3. 68KB Image download
Figure 2. 28KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bertan I, de Carvalho FIF, de Oliveira AC: Parental selection strategies in plant breeding programs. J Crop Sci Biotech 2007, 10:211-222.
  • [2]Luby JJ, Show DV: Does marker-assisted selection make dollars and sense in a fruit breeding programme? Hort Sci 2001, 36:872.
  • [3]Rikkerink EHA, Oraguzie NC, Gardiner SE: Prospects of association mapping in perennial horticultural crops. In Association mapping in plants. Edited by Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN. New York: Springer; 2007:249-269.
  • [4]Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
  • [5]Heffner EL, Sorrells ME, Jannink JL: Genomic selection for crop improvement. Crop Sci 2009, 49:1-12.
  • [6]Jannink JL, Lorenz AJ, Iwata H: Genomic selection in plant breeding: from theory to practice. Brief Func Genomic Progeomic 2010, 9:166-177.
  • [7]Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL: Genomic selection in plant breeding: knowledge and prospects. Adv Agron 2011, 110:77-123.
  • [8]Grattapaglia D, Plomion C, Kirst M, Sederoff RR: Genomics of growth traits in forest trees. Curr Opin Plant Biol 2009, 12:148-156.
  • [9]Iwata H, Hayashi T, Tsumura Y: Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 2011, 7:747-758.
  • [10]Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, et al.: Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist 2012, 194:116-128.
  • [11]Resende MFR Jr, Munoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M: Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytologist 2012, 193:617-624.
  • [12]Resende MFR Jr, Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M: Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 2012, 190:1503-1510.
  • [13]Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagne D: Towards genomic selection in apple (Malus x domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 2012, 8:1-14.
  • [14]Kumar S, Chagne D, Bink MCAM, Volz RK, Whitworth C, Carlisle C: Genomic selection for fruit quality traits in apple (Malus × domestica borkh.). PLoS ONE 2012, 7:e36674.
  • [15]Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T: Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 2013, 63:125-140.
  • [16]Lü HY, Liu XF, Wei SP, Zhang YM: Epistatic association mapping in homozygous crop cultivars. PLoS ONE 2011, 6:e17773.
  • [17]Niu Y, Xu Y, Liu XF, Yang SX, Wei SP, Xie FT, Zhang YM: Association mapping for seed size and shape traits in soybean cultivars. Mol Breed 2013, 31:785-794.
  • [18]Ministry of Agriculture, Forestry and Fisheries: The 86th statistical yearbook of ministry of agriculture, forestry and fisheries (2010–2011). http://www.maff.go.jp/e/tokei/kikaku/nenji_e/86nenji/index.html webcite
  • [19]Fernandez-Fernandez F, Harvey NG, James CM: Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 2006, 6:1039-1041.
  • [20]Inoue E, Matsuki H, Anzai H, Evans K: Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2007, 7:445-447.
  • [21]Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T: Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 2009, 59:391-400.
  • [22]Sawamura Y, Saito T, Shoda M, Yamamoto T, Sato Y, Hayashi T, Kotobuki K: A new self-incompatible allele in Japanese pear ‘Shinsei’ and ‘Shinkou’. J Jpn Soc Hort Sci 2002, 71:342-347.
  • [23]Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N: Simple sequence repeats for genetic analysis in pear. Euphytica 2002, 124:129-137.
  • [24]Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N: Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 2002, 106:9-18.
  • [25]Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T: Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 2007, 57:321-329.
  • [26]Iwata H, Ebana K, Fukuoka S, Jannink JL, Hayashi T: Bayesian multilocus association mapping on ordinal and censored traits and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theor Appl Genet 2009, 118:865-880.
  • [27]Fan R, Jung J, Jin L: High-resolution association mapping of quantitative trait loci: a population-based approach. Genetics 2006, 172:663-686.
  • [28]Meuwissen T, Goddard M: Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 2010, 185:623-631.
  • [29]Habier D, Fernando RL, Dekkers JCM: Genetic relationship information on genome-assisted breeding values. Genetics 2007, 177:2389-2397.
  • [30]Zhong S, Dekkers JCM, Fernando RL, Jannink JL: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 2009, 182:355-364.
  • [31]Iwata H, Jannink JL: Accuracy of genomic selection prediction in barley breeding programs: a simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Sci 2011, 51:1915-1927.
  • [32]Gianola D, Fernando RL, Stella A: Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 2006, 173:1761-1776.
  • [33]Gianola D, van Kaam JB: Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 2008, 178:2289-2303.
  • [34]Heslot N, Yang HP, Sorrels ME, Jannink JL: Genomic selection in plant breeding: a comparison of models. Crop Sci 2012, 52:146-160.
  • [35]Scheet P, Stephens M: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 2006, 78:629-644.
  • [36]Abecasis GR, Li Y, Willer CJ, Ding J, Scheet P: MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010, 34:816-834.
  • [37]Yi N, Liu N, Zhi D, Li J: Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects. PLoS Genet 2011, 7:e1002382.
  • [38]Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC Genet 2013, 14:5.
  • [39]Feng JY, Zhang J, Zhang WJ, Wang SB, Han SF, Zhang YM: An efficient hierarchical generalized linear mixed model for mapping QTL of ordinal traits in crop cultivars. PLoS ONE 2010, 8:e59541.
  • [40]Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML: Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011, 12:499-510.
  • [41]Kilian B, Graner A: NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 2012, 11:38-50.
  • [42]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6:e19379.
  • [43]Edwards D, Batley J, Snowdon RJ: Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 2013, 126:1-11.
  • [44]Yamamoto T, Terakami S, Moriya S, Hosaka F, Kurita K, Kanamori H, Katayose Y, Saito T, Nishitani C: DNA markers developed from genome sequencing analysis in Japanese pear (Pyrus pyrifolia). Acta Hort 2013, 976:477-483.
  • [45]Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K: Aligned genetic linkage maps of apple rootstock cultivar 'JM7' and Malus sieboldii 'Sanashi 63' constructed with novel EST-SSRs. Tree Genet Genomes 2012, 8:709-723.
  • [46]Celton JM, Tustin DS, Chagné D, Gardiner SE: Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 2009, 5:93-107.
  • [47]Kotobuki K: Japanese pear. In The descriptors for characterization and evaluation in plant genetic resources (volume 1). Edited by Nagamine T, Takeda H. Tsukuba: National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries of Japan; 1999:340-345.
  • [48]Tamura F: Japanese pear. In Horticulture in Japan 2006. Edited by Japanese Society for Horticultural Science. Kyoto: Shoukadoh Publication; 2006:50-58.
  • [49]Kajiura M, Suzuki K, Yamazaki T: Color chart for Japanese pear (Pyrus serotina var. culta Rehder). HortSci 1975, 10:257-258.
  • [50]Browning SR, Browning BL: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by using localized haplotype clustering. Am J Hum Genet 2007, 81:1084-1097.
  • [51]Haldane JBS: The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 1919, 8:299-309.
  • [52]Albert JH, Chib S: Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc 1993, 88:669-679.
  • [53]Lande R, Thompson R: Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 1990, 124:743-756.
  文献评价指标  
  下载次数:12次 浏览次数:10次