期刊论文详细信息
BMC Genomics
Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming
Magnus Lucassen3  Hans-Otto Pörtner3  Christoph Held1  Daniela Storch3  Felix Christopher Mark3  Melanie Schiffer3  Stephan Frickenhaus2  Lars Harms3 
[1] Functional Ecology, Alfred Wegener Institute, Bremerhaven, Germany;Scientific Computing, Alfred Wegener Institute, Bremerhaven, Germany;Integrative Ecophysiology, Alfred Wegener Institute, Bremerhaven, Germany
关键词: Crustaceans;    Gene expression;    Warming;    Ocean acidification;    RNA-Seq;    Hyas araneus;   
Others  :  1140551
DOI  :  10.1186/1471-2164-15-789
 received in 2014-01-13, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 μatm) and high (1,960 μatm) PCO2 at different temperatures (5°C and 10°C).

Results

The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid–base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid–base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid–base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid–base compensation and metabolic down-regulation.

Conclusion

Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.

【 授权许可】

   
2014 Harms et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325042948233.pdf 763KB PDF download
Figure 5. 49KB Image download
Figure 4. 39KB Image download
Figure 3. 18KB Image download
Figure 2. 40KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Pörtner HO, Langenbuch M, Michaelidis B: Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 2005, 110(C9):1-15.
  • [2]Fabry VJ, Seibel BA, Feely RA, Orr JC: Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 2008, 65:414-432.
  • [3]Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O: Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaption through lifestyle and ontogeny? Biogeosciences 2009, 6:1-19.
  • [4]Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 2013, 19(6):1884-1896.
  • [5]Wittmann A, Pörtner H-O: Sensitivities of extant animal taxa to ocean acidification. Nat Clim Chang 2013. doi:10.1038/NCLIMATE1982
  • [6]Michaelidis B, Ouzounis C, Paleras A, Pörtner H-O: Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 2005, 293:109-118.
  • [7]Kurihara H: Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 2008, 373:275-284.
  • [8]Wood HL, Spicer JI, Widdicombe S: Ocean acidification may increase calcification rates, but at a cost. Proc Biol Sci/ Royal Soc 2008, 275(1644):1767-1773.
  • [9]Small D, Calosi P, White D, Spicer JI, Widdicombe S: Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat Biol 2010, 10(1):11-21.
  • [10]Gutowska MA, Pörtner HO, Melzner F: Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol Prog Ser 2008, 373:303-309.
  • [11]Whiteley NM: Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 2011, 430:257-271.
  • [12]Pane EF, Barry JP: Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 2007, 334:1-9.
  • [13]Walther K, Anger K, Pörtner H-O: Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Ecol Prog Ser 2010, 417:159-170.
  • [14]Schiffer M, Harms L, Pörtner HO, Lucassen M, Mark FC, Storch D: Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costs. Mar Biol 2012, 160(8):1943-1953.
  • [15]Walther K, Sartoris F-J, Bock C, Pörtner H-O: Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 2009, 6:2207-2215.
  • [16]Zittier ZMC, Hirse T, Pörtner H-O: The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid–base balance in the spider crab, Hyas araneus. Mar Biol 2013, 160(8):2049-2062.
  • [17]Spicer JI, Raffo A, Widdicombe S: Influence of CO2-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Mar Biol 2006, 151(3):1117-1125.
  • [18]Dissanayake A, Ishimatsu A: Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J Mar Sci 2011, 68(6):1147-1154.
  • [19]Carter HA, Ceballos-Osuna L, Miller NA, Stillman JH: Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J Exp Biol 2013, 216(Pt 8):1412-1422.
  • [20]Wickins JF: The effect of hypercapnia sea water on growth and mineralization in Penaid prawns. Aquaculture 1984, 41:37-48.
  • [21]Long WC, Swiney KM, Harris C, Page HN, Foy RJ: Effects of Ocean Acidification on Juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS One 2013, 8(4):e60959.
  • [22]Kurihara H, Shimode S, Shirayama Y: Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Mar Pollut Bull 2004, 49(9–10):721-727.
  • [23]Findlay HS, Kendall MA, Spicer JI, Widdicombe S: Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser 2009, 389:193-202.
  • [24]Watanabe Y, Yamaguchi A, Ishida H, Harimoto T, Suzuki S, Sekido Y, Ikeda T, Shirayama Y, Mac Takahashi M, Ohsumi T, Ishizaka J: Lethality of increasing CO2 levels on deep-sea copepods in the Western North Pacific. J Oceanogr 2006, 62:185-196.
  • [25]Pörtner H-O, Bock C, Reipschläger A: Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 2000, 203:2417-2428.
  • [26]Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST: CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A Mol Integr Physiol 2011, 160(3):331-340.
  • [27]Reipschläger A, Pörtner H-O: Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 1996, 199:1801-1807.
  • [28]Langenbuch M, Pörtner H-O: Changes in metabolic rate and N excreation in marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid–base variables. J Exp Biol 2002, 205:1153-1160.
  • [29]Todgham AE, Hofmann GE: Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 2009, 212(Pt 16):2579-2594.
  • [30]Gracey AY: Interpreting physiological responses to environmental change through gene expression profiling. J Exp Biol 2007, 210(Pt 9):1584-1592.
  • [31]Stillman JH, Tagmount A: Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes. Mol Ecol 2009, 18(20):4206-4226.
  • [32]Lockwood BL, Sanders JG, Somero GN: Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol 2010, 213(Pt 20):3548-3558.
  • [33]Lockwood BL, Somero G: Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol Ecol 2010, 20(3):517-529.
  • [34]Gracey AY, Troll JV, Somero G: Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. PNAS 2001, 98(4):1993-1998.
  • [35]Sussarellu R, Fabiouxa C, Le Moullacb G, Fleuryc E, Moragaa D: Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar Genomics 2010, 3(3–4):133-143.
  • [36]Fehsenfeld S, Kiko R, Appelhans Y, Towle DW, Zimmer M, Melzner F: Effects of elevated seawater pCO(2) on gene expression patterns in the gills of the green crab, Carcinus maenas. BMC Genomics 2011, 12:488.
  • [37]Evans TG, Chan F, Menge BA, Hofmann GE: Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol Ecol 2013, 22(6):1609-1625.
  • [38]Henry RP, Cameron JN: The role of carbonic anhydrase in respiration, ion regulation and acid–base balance in the aquatic crab Callinectes sapidus and the terrestrial crab Gecarcinus lateralis. J Exp Biol 1983, 103:205-223.
  • [39]Henry RP, Wheatly MG: Interaction of respiration, ion regulation, and acid–base balance in the everyday life of aquatic crustaceans. Am Zool 1992, 32:407-416.
  • [40]Harms L, Frickenhaus S, Schiffer M, Mark FC, Storch D, Pörtner H-O, Held C, Lucassen M: Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus. Comp Biochem Physiol Part D Genomics Proteomics 2013, 8(4):344-351.
  • [41]Lewis E, Wallace D: Program Developed for CO2 System Calculations. In ORNL/CDIAC-105a. Oak Ridge, Tennesse: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy; 1998.
  • [42]Lenfant C, Aucutt C: Measurement of blood gasses by gas chromatography. Respir Physiol 1966, 1:398-407.
  • [43]Pörtner H-O, Boutillier RG, Tang Y, Toews DP: Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotracetic acid. Respir Physiol 1990, 81:255-274.
  • [44]Pörtner H-O, Bickmeyer U, Bleich M, Bock C, Brownlee C, Melzner F, Michaelidis B, Sartoris F-J, Storch D: Studies of acid–base status and regulation. In Guide of Best Practise for Ocean Acidification Research and Data Reporting. Edited by Riebesell U, Fabry VJ, Hansson L, Gattuso J-P. Luxembourg: Publications Office of the European Union; 2010:137-166.
  • [45]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [46]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [47]R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
  • [48]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
  • [49]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [50]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
  • [51]Supek F, Bošnjak M, Škunca N, Šmuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011, 6(7):e21800.
  • [52]Kawahara-Miki R, Wada K, Azuma N, Chiba S: Expression profiling without genome sequence information in a non-model species, pandalid shrimp (Pandalus latirotris), by next-generation sequencing. PLoS One 2011, 6(11):e26043.
  • [53]Somero G, Hochachka W: Biochemical adaptation to the environment. Am Zool 1971, 11:159-167.
  • [54]Peterson ME, Daniel RM, Danson MJ, Eisenthal R: The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem J 2007, 402(2):331-337.
  • [55]Freire CA, Onken H, McNamara JC: A structure-function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A Mol Integr Physiol 2008, 151(3):272-304.
  • [56]Henry RP, Lucu C, Onken H, Weihrauch D: Multiple functions of the crustacean gill: osmotic/ionic regulation, acid–base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 2012, 3:431.
  • [57]Compere P, Wanson S, Pequeux A, Gilles R, Goffinet G: Ultrastructural changes in the gill epithelium of the green crab Carcinus maenas in relation to the external salinity. Tissue Cell 1989, 21(2):299-318.
  • [58]Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 2006, 441(7095):840-846.
  • [59]Kotlyar S, Weihrauch D, Paulsen RS, Towle DW: Expression of arginine kinase enzymatic activity and mRNA in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus. J Exp Biol 2000, 205:2395-2404.
  • [60]Sommer MJ, Mantel LH: Effect of dopamine, cyclic AMP, and pericardial organs on sodium uptake and Na/K-ATPase activity in gills of the green crab Carcinus maenas. J Exp Zool 1988, 248:272-277.
  • [61]Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ: Channel-mediated tonic GABA release from glia. Science 2010, 330(6005):790-796.
  • [62]Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J: Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 2003, 278(42):41114-41125.
  • [63]Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM: Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica (Gmelin). Mar Ecol Prog Ser 2010, 419:95-108.
  • [64]Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G: Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 2009, 9(3):265-276.
  • [65]Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J: Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. Proc Natl Acad Sci U S A 2010, 107(1):442-447.
  • [66]Zippin JH, Levin LR, Buck J: CO2/HCO3−responsive soluble adenylyl cyclase as a putative metabolic sensor. Endocrinol Metab 2001, 12(8):366-370.
  • [67]Gopalakrishnan L, Scarpulla RC: Differential regulation of respiratory chain subunits by a CREB-dependent signal transduction pathway. J Biol Chem 1993, 269(1):105-113.
  • [68]Wyatt GR, Kalf GF: The chemistry of insect hemolymph. J Gen Physiol 1957, 40(6):833-847.
  • [69]Johnston MA, Davies PS: Carbohydrates of the hepatopancreas and blood tissue of Carcinus. Comp Biochem Physiol 1971, 41B:433-443.
  • [70]Chung JS: A trehalose 6-phosphate synthase gene of the hemocytes of the blue crab, Callinectes sapidus: cloning, the expression, its enzyme activity and relationship to hemolymph trehalose levels. Saline Syst 2008, 4:18.
  • [71]Siebers D, Lucu C, Sperling K-R, Eberlein K: Kinetics of osmoregulation in the crab Carcinus maenas. Mar Biol 1972, 17:291-303.
  • [72]Hofmann B, Hecht H-J, Flohé L: Peroxiredoxins. Biol Chem 2002, 383:347-364.
  • [73]Premereur N, Van den Branden C, Roels F: Cytochrome P-450-dependent H2O2 production demonstrated in vivo. Funct Ecol 1986, 199(1):415-424.
  • [74]Livingstone DR, Marth PG, Michel X, Narbonne JF, O'hara S, Ribera D, Winston GW: Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other molluscs. Funct Ecol 1990, 4(3):415-424.
  • [75]Cheng SY, Lee WC, Chen JC: Increase of uricogenesis in the kuruma shrimp Marsupenaeus japonicus reared under hyper-osmotic conditions. Comp Biochem Physiol B Biochem Mol Biol 2004, 138(3):245-253.
  • [76]Boveris A, Oshino N, Chance B: The cellular production of hydrogen peroxide. Biochem J 1972, 128:617-630.
  • [77]Kang BJ, Nanri T, Lee JM, Saito H, Han CH, Hatakeyama M, Saigusa M: Vitellogenesis in both sexes of gonochoristic mud shrimp, Upogebia major (Crustacea): analyses of vitellogenin gene expression and vitellogenin processing. Comp Biochem Physiol B Biochem Mol Biol 2008, 149(4):589-598.
  • [78]Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV: Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A 2006, 103(4):962-967.
  • [79]Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM: Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 2011, 214(Pt 11):1836-1844.
  • [80]Denicola A, Freeman BA, Trujillo M, Radi R: Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 1996, 333(1):49-58.
  • [81]Livingstone DR: Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 2001, 42(8):656-666.
  • [82]Dalle-Donne I, Rossi R, Milzani A, Simplicio PD, Colombo R: The actin cytoskeleton response to oxidants: from small heat shock protein phosphorilation to changes in the redox state of actin itself. Free Radic Biol Med 2001, 31(12):1624-1632.
  • [83]Courgeon A-M, Maingourd M, Maisonhaute C, Montmory C, Rollet E, Tanguay RM, Best-Bellpomme M: Effect of hydrogen peroxide on cytoskeletal proteins of Drosophila cells: comparison with heat shock and other stressors. Exp Cell Res 1993, 204:30-37.
  • [84]Lindquist S: The heat-shock response. Ann Rev Biochemistry 1986, 55:1151-1191.
  • [85]Feder ME, Hofmann GE: Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 1999, 61:243-282.
  • [86]Wickner S: Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286(5446):1888-1893.
  • [87]Thomsen J, Melzner F: Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 2010, 157(12):2667-2676.
  • [88]Hüning AK, Melzner F, Thomsen J, Gutowska MA, Krämer L, Frickenhaus S, Rosenstiel P, Pörtner H-O, Philipp EER, Lucassen M: Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol 2013, 160(8):1845-1861.
  • [89]Pörtner H-O, Reipschläger A, Heisler N: Acid–base regulation, metabolism and energetics in Sipunculus nudus as a function of ambiant carbon dioxide level. J Exp Biol 1998, 201:43-55.
  • [90]Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA: Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 2012, 79:1-15.
  • [91]Frederich M, Pörtner H-O: Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp Physiol 2000, 279:R1531-R1538.
  • [92]Pörtner H-O: Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 2001, 88(4):137-146.
  • [93]Pörtner H-O: Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 2010, 213(6):881-893.
  • [94]Kooijman SALM: Dynamic Energy Budget Theory for Metabolic Organisation, Volume 3. Cambridge, United Kingdom: Cambridge University Press; 2010.
  • [95]Pörtner H-O, Farrell AP: Physiology and climate change. Science 2008, 322:690-692.
  文献评价指标  
  下载次数:34次 浏览次数:45次