期刊论文详细信息
BMC Genomics
Positive Darwinian selection in the singularly large taste receptor gene family of an ‘ancient’ fish, Latimeria chalumnae
Sigrun I Korsching1  Adnan S Syed1 
[1] Institute of Genetics, University of Cologne, 50674 Cologne, Germany
关键词: Evolution;    Sarcopterygian;    Phylogeny;    Pheromone;    Bitter taste;    Coelacanth;   
Others  :  1216336
DOI  :  10.1186/1471-2164-15-650
 received in 2014-03-03, accepted in 2014-07-29,  发布年份 2014
PDF
【 摘 要 】

Background

Chemical senses are one of the foremost means by which organisms make sense of their environment, among them the olfactory and gustatory sense of vertebrates and arthropods. Both senses use large repertoires of receptors to achieve perception of complex chemosensory stimuli. High evolutionary dynamics of some olfactory and gustatory receptor gene families result in considerable variance of chemosensory perception between species. Interestingly, both ora/v1r genes and the closely related t2r genes constitute small and rather conserved families in teleost fish, but show rapid evolution and large species differences in tetrapods. To understand this transition, chemosensory gene repertoires of earlier diverging members of the tetrapod lineage, i.e. lobe-finned fish such as Latimeria would be of high interest.

Results

We report here the complete T2R repertoire of Latimeria chalumnae, using thorough data mining and extensive phylogenetic analysis. Eighty t2r genes were identified, by far the largest family reported for any species so far. The genomic neighborhood of t2r genes is enriched in repeat elements, which may have facilitated the extensive gene duplication events resulting in such a large family. Examination of non-synonymous vs. synonymous substitution rates (dN/dS) suggests pronounced positive Darwinian selection in Latimeria T2Rs, conceivably ensuring efficient neo-functionalization of newly born t2r genes. Notably, both traits, positive selection and enrichment of repeat elements in the genomic neighborhood, are absent in the twenty v1r genes of Latimeria. Sequence divergence in Latimeria T2Rs and V1Rs is high, reminescent of the corresponding teleost families. Some conserved sequence motifs of Latimeria T2Rs and V1Rs are shared with the respective teleost but not tetrapod genes, consistent with a potential role of such motifs in detection of aquatic chemosensory stimuli.

Conclusions

The singularly large T2R repertoire of Latimeria may have been generated by facilitating local gene duplication via increased density of repeat elements, and efficient neofunctionalization via positive Darwinian selection.

The high evolutionary dynamics of tetrapod t2r gene families precedes the emergence of tetrapods, i.e. the water-to-land transition, and thus constitutes a basal feature of the lobe-finned lineage of vertebrates.

【 授权许可】

   
2014 Syed and Korsching; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630035540550.pdf 2529KB PDF download
Figure 8. 35KB Image download
Figure 7. 116KB Image download
Figure 6. 76KB Image download
Figure 5. 177KB Image download
Figure 4. 154KB Image download
Figure 3. 104KB Image download
Figure 2. 217KB Image download
Figure 1. 113KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Mombaerts P: Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 2004, 5:263-278.
  • [2]Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ: The receptors and coding logic for bitter taste. Nature 2005, 434:225-229.
  • [3]Mori K, Sakano H: How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 2011, 34:467-499.
  • [4]Kapsimali M, Barlow LA: Developing a sense of taste. Semin Cell Dev Biol 2013, 24:200-209.
  • [5]Baier H, Korsching S: Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J Neurosci 1994, 14:219-230.
  • [6]Friedrich RW, Korsching SI: Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J Neurosci 1998, 18:9977-9988.
  • [7]Friedrich RW, Korsching SI: Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 1997, 18:737-752.
  • [8]Nei M, Niimura Y, Nozawa M: The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 2008, 9:951-963.
  • [9]Grus WE, Shi P, Zhang J: Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol Biol Evol 2007, 24:2153-2157.
  • [10]Saraiva LR, Korsching SI: A novel olfactory receptor gene family in teleost fish. Genome Res 2007, 17:1448-1457.
  • [11]Dong D, Jones G, Zhang S: Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evol Biol 2009, 9:12.
  • [12]Hussain A, Saraiva LR, Korsching SI: Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc Natl Acad Sci U S A 2009, 106:4313-4318.
  • [13]Young JM, Massa HF, Hsu L, Trask BJ: Extreme variability among mammalian V1R gene families. Genome Res 2010, 20:10-18.
  • [14]Ishimaru Y, Okada S, Naito H, Nagai T, Yasuoka A, Matsumoto I, Abe K: Two families of candidate taste receptors in fishes. Mech Dev 2005, 122:1310-1321.
  • [15]Li D, Zhang J: Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 2014, 31(2):303-309.
  • [16]Dulac C, Torello AT: Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 2003, 4:551-562.
  • [17]Zardoya R, Meyer A: Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. Proc Natl Acad Sci U S A 1996, 93:5449-5454.
  • [18]Amemiya CT, Alfoldi J, Lee AP, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith JJ, Robinson M, Dorrington RA, Gerdol M, Aken B, Biscotti MA, Barucca M, Baurain D, Berlin AM, Blatch GL, Buonocore F, Burmester T, Campbell MS, Canapa A, Cannon JP, Christoffels A, De Moro G, Edkins AL, et al.: The African coelacanth genome provides insights into tetrapod evolution. Nature 2013, 496:311-316.
  • [19]Picone B, Hesse U, Panji S, Van Heusden P, Jonas M, Christoffels A: Taste and odorant receptors of the coelacanth-A gene repertoire in transition. J Exp Zool B Mol Dev Evol 2013. Sep 18, doi:10.1002/jez.b.22531. [Epub ahead of print]
  • [20]Nikaido M, Noguchi H, Nishihara H, Toyoda A, Suzuki Y, Kajitani R, Suzuki H, Okuno M, Aibara M, Ngatunga BP, Mzighani SI, Kalombo HW, Masengi KW, Tuda J, Nogami S, Maeda R, Iwata M, Abe Y, Fujimura K, Okabe M, Amano T, Maeno A, Shiroishi T, Itoh T, Sugano S, Kohara Y, Fujiyama A, Okada N: Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res 2013, 23:1740-1748.
  • [21]Broad Institute 2012. [http://www.ensembl.org/Latimeria_chalumnae/Info/Index webcite]
  • [22]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [23]Syed AS, Sansone A, Nadler W, Manzini I, Korsching SI: Ancestral amphibian v2rs are expressed in the main olfactory epithelium. Proc Natl Acad Sci U S A 2013, 110:7714-7719.
  • [24]Oka Y, Saraiva LR, Kwan YY, Korsching SI: The fifth class of Galpha proteins. Proc Natl Acad Sci U S A 2009, 106:1484-1489.
  • [25]Shi P, Zhang J: Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 2007, 17:166-174.
  • [26]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [27]Zhou Y, Dong D, Zhang S, Zhao H: Positive selection drives the evolution of bat bitter taste receptor genes. Biochem Genet 2009, 47:207-215.
  • [28]Shi P, Zhang J, Yang H, Zhang YP: Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol Biol Evol 2003, 20:805-814.
  • [29]Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six Mammalian genomes. PLoS Genet 2008, 4:e1000144.
  • [30]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3:418-426.
  • [31]Gojobori T: Codon substitution in evolution and the “saturation” of synonymous changes. Genetics 1983, 105:1011-1027.
  • [32]Mank JE, Axelsson E, Ellegren H: Fast-X on the Z: rapid evolution of sex-linked genes in birds. Genome Res 2007, 17:618-624.
  • [33]Kosakovsky Pond SL, Frost SD: Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22:1208-1222.
  • [34]Lampert KP, Fricke H, Hissmann K, Schauer J, Blassmann K, Ngatunga BP, Schartl M: Population divergence in East African coelacanths. Curr Biol 2012, 22:R439-R440.
  • [35]Behrens M, Meyerhof W: Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs. Semin Cell Dev Biol 2013, 24:215-221.
  • [36]Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W: The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol 2009, 9:180.
  • [37]Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
  • [38]Bourque G: Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 2009, 19:607-612.
  • [39]Ohshima K: RNA-mediated gene duplication and retroposons: retrogenes, LINEs, SINEs, and sequence specificity. Int J Evol Biol 2013, 2013:424726.
  • [40]Forconi M, Chalopin D, Barucca M, Biscotti MA, De Moro G, Galiana D, Gerdol M, Pallavicini A, Canapa A, Olmo E, Volff JN: Transcriptional activity of transposable elements in coelacanth. J Exp Zool B Mol Dev Evol 2013. Sep 3, doi:10.1002/jez.b.22527. [Epub ahead of print].
  • [41]Estecio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S, Oki Y, Kondo Y, Jelinek J, Shen L, Hartung H, Aplan PD, Czerniak BA, Liang S, Issa JP: Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 2010, 20:1369-1382.
  • [42]Lane RP, Cutforth T, Axel R, Hood L, Trask BJ: Sequence analysis of mouse vomeronasal receptor gene clusters reveals common promoter motifs and a history of recent expansion. Proc Natl Acad Sci U S A 2002, 99:291-296.
  • [43]Zhu M, Yu X, Lu J, Qiao T, Zhao W, Jia L: Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nat Commun 2012, 3:772.
  • [44]Grus WE, Zhang J: Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates. Mol Biol Evol 2009, 26:407-419.
  • [45]Oike H, Nagai T, Furuyama A, Okada S, Aihara Y, Ishimaru Y, Marui T, Matsumoto I, Misaka T, Abe K: Characterization of ligands for fish taste receptors. J Neurosci 2007, 27:5584-5592.
  • [46]Fricke H, Hissmann K, Schauer J, Erdmann M, Moosa MK, Plante R: Biogeography of the Indonesian coelacanths. Nature 2000, 403:38.
  • [47]Behrens M, Meyerhof W: Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav 2011, 105:4-13.
  • [48]Gilad Y, Man O, Glusman G: A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res 2005, 15:224-230.
  • [49]Hohenbrink P, Radespiel U, Mundy NI: Pervasive and ongoing positive selection in the vomeronasal-1 receptor (V1R) repertoire of mouse lemurs. Mol Biol Evol 2012, 29:3807-3816.
  • [50]Sugawara T, Go Y, Udono T, Morimura N, Tomonaga M, Hirai H, Imai H: Diversification of bitter taste receptor gene family in western chimpanzees. Mol Biol Evol 2011, 28:921-931.
  • [51]Zhang X, Rodriguez I, Mombaerts P, Firestein S: Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 2004, 83:802-811.
  • [52]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
  • [53]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
  • [54]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
  • [55]Sanchez R, Serra F, Tarraga J, Medina I, Carbonell J, Pulido L, de Maria A, Capella-Gutierrez S, Huerta-Cepas J, Gabaldon T, Dopazo J, Dopazo H: Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res 2011, 39:W470-W474.
  • [56]Reche P: SIAS. 2013. [http://imed.med.ucm.es/Tools/sias.html webcite]
  • [57]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
  • [58]Pirovano W, Feenstra KA, Heringa J: PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 2008, 24:492-497.
  • [59]Smit AFA, Hubley R, Green P: RepeatMasker Open 4.0.3. [http://www.repeatmasker.org/ webcite] 1996-2010
  • [60]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34:W609-W612.
  • [61]Suzuki Y, Gojobori T: A method for detecting positive selection at single amino acid sites. Mol Biol Evol 1999, 16:1315-1328.
  • [62]Kosakovsky Pond SL, Frost SDW: Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005, 21:2531-2533.
  • [63]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  文献评价指标  
  下载次数:4次 浏览次数:5次