期刊论文详细信息
BMC Complementary and Alternative Medicine
Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis
Blanca E. Rivera-Chavira3  Luz María Rodríguez-Valdez3  Blanca E. Sánchez-Ramírez3  Manuel Villanueva-García2  Luvia E. Sánchez-Torres1  Guadalupe Virginia Nevárez-Moorillón3  Sergio Andrade-Ochoa3 
[1] Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomas 11340, México, DF, México;Asociación de Jubilados de la Universidad de Guanajuato, Guanajuato, Gto., México;Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N. Campus Universitario II, Chihuahua 31125, Chih., México
关键词: Antimycobacterial activity;    QSAR;    Phenylpropanoids;    Terpenes;    Essential oils;   
Others  :  1233550
DOI  :  10.1186/s12906-015-0858-2
 received in 2015-04-15, accepted in 2015-09-11,  发布年份 2015
PDF
【 摘 要 】

Background

Essential oils and their constituents are commonly known for their antibacterial, antifungal and antiparasitic activity, and there are also reports on the antimycobacterial properties, but more experimental data are needed for the description of the mechanism of action or structural (and molecular) properties related to the antimicrobial activity.

Methods

Twenty-five constituents of essential oils were evaluated against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis AN5 by the Alamar Blue technique. Twenty compounds were modeled using in silico techniques descriptor generation and subsequent QSAR model building using genetic algorithms. The p-cymene, menthol, carvacrol and thymol were studied at the quantum mechanical level through the mapping of HOMO and LUMO orbitals. The cytotoxic activity against macrophages (J774A) was also evaluated for these four compounds using the Alamar Blue technique.

Results

All compounds tested showed to be active antimicrobials against M. tuberculosis. Carvacrol and thymol were the most active terpenes, with MIC values of 2.02 and 0.78 μg/mL respectively. Cinnamaldehyde and cinnamic acid were the most active phenylpropanes with MIC values of 3.12 and 8.16 μg/mL respectively. The QSAR models included the octanol-water partition (LogP) ratio as the molecular property that contributes the most to the antimycobacterial activity and the phenolic group (nArOH) as the major structural element.

Conclusions

The description of the molecular properties and the structural characteristics responsible for antimycobacterial activity of the compounds tested, were used for the development of mathematical models that describe structure-activity relationship. The identification of molecular and structural descriptors provide insight into the mechanisms of action of the active molecules, and all this information can be used for the design of new structures that could be synthetized as potential new antimycobacterial agents.

【 授权许可】

   
2015 Andrade-Ochoa et al.

【 预 览 】
附件列表
Files Size Format View
20151122010727890.pdf 1921KB PDF download
Fig. 4. 79KB Image download
Fig. 3. 22KB Image download
Fig. 2. 40KB Image download
Fig. 1. 64KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Global Tuberculosis Control 2014: World Health Organization. Available from: http://www.who.int/tb/publications/global_report/en/; April 14th 2015.
  • [2]Multidrug and extensively drug resistant TB (M/XDR-TB) Global report on surveillance and response. World Health Organization, Geneva; 2010.
  • [3]Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, Sun X, Lu Z, Zhang H. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement. Altern. Med. 2014; 14(1):400. BioMed Central Full Text
  • [4]Robles-Zepeda RE, Coronado-Aceves EW, Velázquez-Contreras CA, Ruiz-Bustos E, Navarro-Navarro M, Garibay-Escobar A. In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico. BMC Complement. Altern. Med. 2013; 13(1):329. BioMed Central Full Text
  • [5]Canales M, Hernández T, Caballero J, Vivar A, Avila G, Duran A, Lira R. Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. J Ethnopharmacol. 2005; 97(3):429-439.
  • [6]Burt SA, Reinders RD. Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7. Lett Appl Microbiol. 2003; 36(3):162-167.
  • [7]Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003; 10(10):813-829.
  • [8]Koroch AR, Juliani HR, Zygadlo JA. Bioactivity of essential oils and their components. In: Flavours and fragrances. Springer, Berlin Heidelberg; 2007: p.87-115.
  • [9]Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000; 88(2):308-316.
  • [10]Rajab MS, Cantrell CL, Franzblau SG, Fischer NH. Antimycobacterial activity of (E)-phytol and derivatives. Planta Med. 1998; 64(01):2-4.
  • [11]Newton SM, Lau C, Wright CW. A review of antimycobacterial natural products. Phytother Res. 2000; 14(5):303-322.
  • [12]Cantrell CL, Franzvlau SG, Fischer NH. Antimycobacterial Plant Terpenoids. Planta Med. 2001; 67(8):685-94.
  • [13]Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Nicklaus MC. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J. Chem. Inf. Comput. Sci. 2003; 43(1):228-236.
  • [14]Geronikaki AA, Dearden JC, Filimonov D, Galaeva I, Garibova TL, Gloriozova T, Vlad L. Design of new cognition enhancers: from computer prediction to synthesis and biological evaluation. J Med Chem. 2004; 47(11):2870-2876.
  • [15]Subramaniam R, Rao G. 2D QSAR studies of some novel quinazolinone derivatives as antitubercular agents. J. Comput. Methods Mol. Des. 2011; 3:69-82.
  • [16]Hernández-Ochoa L, Macias-Castañeda CA, Nevárez-Moorillón GV, Salas-Muñoz E, Sandoval-Salas F. Antimicrobial activity of chitosan-based films including spices essential oils and functional extracts. CyTA J Food. 2012; 10(2):85-91.
  • [17]Andrade-Ochoa S, Chacón-Vargas KF, Nevárez-Moorillón GV, Rivera-Chavira BE, Hernández-Ochoa LR. Evaluation of antimycobacterium activity of the essential oils of cumin (Cuminum cyminum), clove (Eugenia caryophyllata), cinnamon (Cinnamomum verum), laurel (Laurus nobilis) and anise (Pimpinella anisum) against Mycobacterium tuberculosis. Adv in Biol Chem. 2013; 3:480-484.
  • [18]Kumar K, Awasthi D, Lee SY, Zanardi I, Ruzsicska B, Knudson S, Ojima I. Novel trisubstituted benzimidazoles, targeting Mtb FtsZ, as a new class of antitubercular agents. J Med Chem. 2010; 54(1):374-381.
  • [19]Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997; 41(5):1004-1009.
  • [20]Deppmeier BJ, Driessen AJ, Hehre TS, Hehre WJ, Johnson JA, Klunzinger PE, Jianguo Y. Spartan ‘08, build 132. Irvine, CA Wavefunction Inc; 2009.
  • [21]Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990; 94(26):8897-8909.
  • [22]Stewart JJ. Optimization of parameters for semiempirical methods I. Method. J Comput Chem. 1989; 10(2):209-220.
  • [23]Talete SRL. Dragon for Windows (software for Molecular Descriptor Calculations) Version 5.4, http://www.talete.mi.it/ 2006.
  • [24]Todeschini R, Consonni V, Mauri A, Pavan M. MobyDigs: software for regression and classification models by genetic algorithms. Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks. (Leardi R., Ed.), 2003. P. 141–167.
  • [25]Frisch MJ et al.. Gaussian 09, Revision D.01 ed. Gaussian, Inc, Wallingford, CT; 2009.
  • [26]Becke AD. Density‐functional thermochemistry III. The role of exact exchange. J Chem Phys. 1993; 98(7):5648-5652.
  • [27]Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys Rev B. 1988; 37:785.
  • [28]Koopmans T. Über die zuordnungwellenfunktionen von und zu den eigenwerteneinzelnen Elektronenátomoseines. Physica. 1934; 1(1):104-113.
  • [29]Takano Y, Houk N. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput. 2005; 1(1):70-77.
  • [30]Vik A, James A, Gundersen LL. Screening of Terpenes and Derivatives for Antimycobacterial Activity; Identification of Geranylgeraniol and Geranylgeranyl Acetate as Potent Inhibitors of EM EMTYPE. Plan med. 2007; 73(13):1410-1412.
  • [31]Alokam R, Jeankumar VU, Sridevi JP, Matikonda SS, Peddi S, Alvala M, Yogeeswari P, Sriram D. Identification and structure-activity relationship study of carvacrol derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. J Enzyme Inhib Med Chem. 2013; 29(4):1-8.
  • [32]Jimenez-Arellanes A, Martinez R, García R, León-Díaz R, Luna-Herrera J, Molina-Salinas G, Said-Fernández S. Thymus vulgaris as a potencial source of antituberculous compounds. Pharmacol Online. 2006; 3:569-74.
  • [33]Siddiqui BS, Bhatti HA, Begum S, Perwaiz S. Evaluation of the antimycobacterium activity of the constituents from Ocimum basilicum against Mycobacterium tuberculosis. J Ethnopharmacol. 2012; 144(1):220-222.
  • [34]Rastogi N, Goh KS, Horgen L, Barrow WW. Synergistic activities of antituberculous drugs with cerulenin and trans‐cinnamic acid against Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 1998; 21(2):149-157.
  • [35]Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob Agents Chemother. 2005; 49(6):2474-2478.
  • [36]Sikkema J, de Bont JAM, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995; 59:201-222.
  • [37]Martínez F, Gómez A. Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion. Phys Chem Liq. 2002; 40(4):411-420.
  • [38]Veldhuizen EJ, Tjeerdsma-van Bokhoven JL, Zweijtzer C, Burt SA, Haagsman HP. Structural requirements for the antimicrobial activity of carvacrol. J. Agric. Food Chem. 2006; 54(5):1874-1879.
  文献评价指标  
  下载次数:54次 浏览次数:57次