期刊论文详细信息
BMC Evolutionary Biology
Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes
Tapash Chandra Ghosh1  Soumita Podder1 
[1] Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
关键词: Alternative splicing;    SNPs;    Evolutionary rate;    Immunological genes;    Autoimmune disease;   
Others  :  1141576
DOI  :  10.1186/1471-2148-12-10
 received in 2011-09-29, accepted in 2012-01-25,  发布年份 2012
PDF
【 摘 要 】

Background

One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions.

Results

Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein) have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder.

Conclusions

Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease.

【 授权许可】

   
2012 Podder and Ghosh; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327082017509.pdf 453KB PDF download
Figure 4. 21KB Image download
Figure 3. 25KB Image download
Figure 2. 32KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hughes AL, Packer B, Welch R, Chanock SJ, Yeager M: High level of functional polymorphism indicates a unique role of natural selection at human immune system loci. Immunogenetics 2005, 57:821-827.
  • [2]Park SG, Choi SS: Expression breadth and expression abundance behave differently in correlations with evolutionary rates. BMC Evol Biol 2010, 10:241. BioMed Central Full Text
  • [3]Limaye N, Belobrajdic KA, Wandstrat AE, Bonhomme F, Edwards SV, Wakeland EK: Prevalence and evolutionary origins of autoimmune susceptibility alleles in natural mouse populations. Genes Immun 2008, 9:61-68.
  • [4]Hahn MW, Demuth JP, Han SG: Accelerated rate of gene gain and loss in primates. Genetics 2007, 177:1941-1949.
  • [5]Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, et al.: Natural selection on protein-coding genes in the human genome. Nature 2005, 437:1153-1157.
  • [6]Thomas JK, Richard AG, Barbara AO, Janis K: Kuby Immunology. 6th edition. W.h.freeman & Co Ltd; 2006.
  • [7]Henderson RD, Bain CJ, Pender MP: The occurrence of autoimmune diseases in patients with multiple sclerosis and their families. J Clin Neurosci 2000, 7:434-437.
  • [8]Aune TM, Parker JS, Maas K, Liu Z, Olsen NJ, Moore JH: Co-localization of differentially expressed genes and shared susceptibility loci in human autoimmunity. Genet Epidemiol 2004, 27:162-172.
  • [9]Wegner N, Wait R, Venables PJ: Evolutionarily conserved antigens in autoimmune disease: implications for an infective aetiology. Int J Biochem Cell Biol 2009, 41:390-397.
  • [10]Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF: Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. J Allergy Clin Immunol 2004, 114:1463-1470.
  • [11]Huang H, Winter EE, Wang H, Weinstock KG, Xing H, Goodstadt L, Stenson PD, Cooper DN, Smith D, Albà MM, et al.: Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol 2004, 5:R47. BioMed Central Full Text
  • [12]Podder S, Ghosh TC: Exploring the differences in evolutionary rates between monogenic and polygenic disease genes in human. Mol Biol Evol 2010, 27:934-941.
  • [13]Podder S, Ghosh TC: Insights into the molecular correlates modulating functional compensation between monogenic and polygenic disease gene duplicates in human. Genomics 2011, 97:200-204.
  • [14]Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, et al.: Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449:913-918.
  • [15]Chen FC, Wang SS, Chen CJ, Li WH, Chuang TJ: Alternatively and constitutively spliced exons are subject to different evolutionary forces. Mol Biol Evol 2006, 23:675-682.
  • [16]Stephan W, Langley CH: Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics 1989, 121:89-99.
  • [17]Begun DJ, Aquadro CF: Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics 1991, 129:1147-1158.
  • [18]Nachman MW, Bauer VL, Crowell SL, Aquadro CF: DNA variability and recombination rates at X-linked loci in humans. Genetics 1998, 150:1133-1141.
  • [19]Dvorák J, Luo MC, Yang ZL: Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species. Genetics 1998, 148:423-434.
  • [20]Hill WG, Robertson A: The effect of linkage on limits to artificial selection. Genet Res 1966, 8:269-294.
  • [21]Connallon T, Knowles LL: Recombination rate and protein evolution in yeast. BMC Evol Biol 2007, 7:235. BioMed Central Full Text
  • [22]Pál C, Papp B, Hurst LD: Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer. Mol Biol Evol 2001, 18:2323-2326.
  • [23]Zhang L, Lu HH, Chung WY, Yang J, Li WH: Patterns of segmental duplication in the human genome. Mol Biol Evol 2005, 22:135-141.
  • [24]Sen K, Podder S, Ghosh TC: Insights into the genomic features and evolutionary impact of the genes configuring duplicated pseudogenes in human. FEBS Lett 2010, 584:4015-4018.
  • [25]Jordan IK, Wolf YI, Koonin EV: Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 2004, 4:22. BioMed Central Full Text
  • [26]Hastings PJ, Lupski JR, Rosenberg SM, Ira G: Mechanisms of change in gene copy number. Nat Rev Genet 2009, 10:551-564.
  • [27]Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP: Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res 2008, 18:1711-1723.
  • [28]Nguyen DQ, Webber C, Ponting CP: Bias of selection on human copy-number variants. PLoS Genet 2006, 2:e20.
  • [29]Modrek B, Lee C: A genomic view of alternative splicing. Nat Genet 2002, 30:13-19.
  • [30]Ramensky VE, Nurtdinov RN, Neverov AD, Mironov AA, Gelfand MS: Positive selection in alternatively spliced exons of human genes. Am J Hum Genet 2008, 83:94-98.
  • [31]Chen FC, Wang SS, Chen CJ, Li WH, Chuang TJ: Alternatively and constitutively spliced exons are subject to different evolutionary forces. Mol Biol Evol 2006, 23:675-682.
  • [32]Lynch KW: Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol 2004, 4:931-940.
  • [33]Zhang H, Wang L, Song L, Zhao J, Qiu L, Gao Y, Song X, Li L, Zhang Y, Zhang L: The genomic structure, alternative splicing and immune response of Chlamys farreri thioester-containing protein. Dev Comp Immunol 2009, 33:1070-1076.
  • [34]Lewis BP, Green RE, Brenner SE: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 2003, 100:189-192.
  • [35]McGlincy NJ, Smith CW: Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 2008, 33:385-393.
  • [36]Edwards YJ, Lobley AE, Pentony MM, Jones DT: Insights into the regulation of intrinsically disordered proteins in the human proteome by analyzing sequence and gene expression data. Genome Biol 2009, 10:R50. BioMed Central Full Text
  • [37]Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK: Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA 2006, 103:8390-8395.
  • [38]Kovacs E, Tompa P, Liliom K, Kalmar L: Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proc Natl Acad Sci USA 2010, 107:5429-5434.
  • [39]Uversky VN, Oldfield CJ, Dunker AK: Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005, 18:343-384.
  • [40]Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK: Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 2002, 55:104-110.
  • [41]Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET: Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 2010, 464:773-777.
  • [42]Krawczak M, Reiss J, Cooper DN: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 1992, 90:41-54.
  • [43]Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN: Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 2007, 28:150-158.
  • [44]Walsh CT: Posttranslational modification of proteins: expanding nature's inventory. Englewood, CO: Roberts and Company Publishers; 2006.
  • [45]Cloos PA, Christgau S: Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 2004, 5:139-158.
  • [46]Gray VE, Kumar S: Rampant purifying selection conserves positions with posttranslational modifications in human proteins. Mol Biol Evol 2011, 28:1565-1568.
  • [47]Ponder JW, Richards FM: Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 1987, 193:775-791.
  • [48]Goldman N, Thorne JL, Jones DT: Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics 1998, 149:445-458.
  • [49]Sunyaev S, Ramensky V, Koch I, Lathe W, Kondrashov AS, Bork P: Prediction of deleterious human alleles. Hum Mol Genet 2001, 10:591-597.
  • [50]Chakraborty S, Kahali B, Ghosh TC: Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks. BMC Syst Biol 2010, 4:155. BioMed Central Full Text
  • [51]Smith NG, Eyre-Walker A: Human disease genes: patterns and predictions. Gene 2003, 318:169-175.
  • [52]López-Bigas N, Ouzounis CA: Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res 2004, 32:3108-3114.
  • [53]Greco D, Somervuo P, Di Lieto A, Raitila T, Nitsch L, Castrén E, Auvinen P: Physiology, pathology and relatedness of human tissues from gene expression meta-analysis. PLoS One 2008, 3:e1880.
  • [54]Conrad B, Antonarakis SE: Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 2007, 8:17-35.
  • [55]Su Z, Wang J, Yu J, Huang X, Gu X: Evolution of alternative splicing after gene duplication. Genome Res 2006, 16:182-189.
  • [56]Cuccurese M, Russo G, Russo A, Pietropaolo C: Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res 2005, 33:5965-5977.
  • [57]Khadra A, Santamaria P, Edelstein-Keshet L: The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. Int Immunol 2010, 22:571-582.
  • [58]Becker KG, Barnes KC, Bright TJ, Wang SA: The genetic association database. Nat Genet 2004, 36:431-432.
  • [59]Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ, Brown SA, et al.: IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 2010, 11:1093-1101.
  • [60]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al.: Ensembl 2011. Nucleic Acids Res 2011, 39:D800-806.
  • [61]Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al.: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004, 101:6062-6067.
  • [62]Podder S, Mukhopadhyay P, Ghosh TC: Multifunctionality dominantly determines the rate of human housekeeping and tissue specific interacting protein evolution. Gene 2009, 439:11-16.
  • [63]Jegga AG, Gowrisankar S, Chen J, Aronow BJ: PolyDoms: a whole genome database for the identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic Acids Res 2007, 35:D700-706.
  • [64]Zhang J, Feuk L, Duggan GE, Khaja R, Scherer SW: Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet Genome Res 2006, 115:205-214.
  • [65]Thorisson GA, Smith AV, Krishnan L, Stein LD: The International HapMap Project Web site. Genome Res 2005, 15:1592-1593.
  • [66]Kato M, Miya F, Kanemura Y, Tanaka T, Nakamura Y, Tsunoda T: Recombination rates of genes expressed in human tissues. Hum Mol Genet 2008, 17:577-586.
  • [67]Lee C, Atanelov L, Modrek B, Xing Y: ASAP: the Alternative Splicing Annotation Project. Nucleic Acids Res 2003, 31:101-105.
  • [68]Yang JO, Kim WY, Bhak J: ssSNPTarget: genome-wide splice-site Single Nucleotide Polymorphism database. Hum Mutat 2009, 30:E1010-1020.
  • [69]Shionyu M, Yamaguchi A, Shinoda K, Takahashi K, Go M: AS-ALPS: a database for analyzing the effects of alternative splicing on protein structure, interaction and network in human and mouse. Nucleic Acids Res 2009, 37:D305-309.
  • [70]Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 2005, 21:3435-3438.
  • [71]Uversky VN, Gillespie JR, Fink AL: Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 2000, 41:415-427.
  • [72]Blom N, Gammeltoft S, Brunak S: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999, 294:1351-1362.
  • [73]Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A: ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003, 31:3784-3788.
  • [74]Ahmad S, Gromiha MM, Sarai A: RVP-net: online prediction of real valued accessible surface area of proteins from single sequences. Bioinformatics 2003, 19:1849-1851.
  • [75]D'Onofrio G, Jabbari K, Musto H, Bernardi G: The correlation of protein hydropathy with the base composition of coding sequences. Gene 1999, 238:3-14.
  文献评价指标  
  下载次数:36次 浏览次数:14次