BMC Research Notes | |
The role of the skin barrier in modulating the effects of common skin microbial species on the inflammation, differentiation and proliferation status of epidermal keratinocytes | |
Georgios N Stamatas1  Thierry Oddos2  Diaraf Yaradou2  José Serrano2  Heng Kuan Wong2  Patrick Duckney2  | |
[1] Johnson & Johnson Santé Beauté France, 1 rue Camille Desmoulins, Issy-les-Moulineaux 92787, France;Johnson & Johnson Santé Beauté France, Campus de Maigremont, Val de Reuil 27100, France | |
关键词: Inflammation; Keratinocyte differentiation; Skin microbiome; Reconstructed human epidermis; Stratum corneum; Skin barrier; Microbial infection; | |
Others : 1140746 DOI : 10.1186/1756-0500-6-474 |
|
received in 2013-04-24, accepted in 2013-11-12, 发布年份 2013 | |
【 摘 要 】
Background
Skin resident microbial species are often thought of either as pathogenic or commensal. However, little is known about the role of the skin barrier in modulating their potential for causing disease. To investigate this question we measured the effects of three microbial species commonly found on the skin (Staphylococcus epidermidis, Staphylococcus aureus, and Propionibacterium acnes) on a reconstructed human epidermal model by either applying the bacteria on the model surface (intact barrier) or adding them to the culture medium (simulating barrier breach).
Results
When added to the medium, all of the tested species induced inflammatory responses and keratinocyte cell death with species-specific potency. P. acnes and S. epidermidis induced specific alterations in the expression of keratinocyte differentiation and proliferation markers, suggesting a barrier reparation response. S. aureus induced complete keratinocyte cell death. On the contrary, topically applied S. epidermidis and P. acnes caused no inflammatory response even when tested at high concentrations, while topical S. aureus induced a weak reaction. None of the tested species were able to alter the expression of keratinocyte differentiation or expression markers, when applied topically.
Conclusions
We show that the skin barrier prevents the effects of common skin bacteria on epidermal keratinocyte inflammation, differentiation and proliferation and highlight the importance of skin barrier in defending against the pathogenic effects of common skin bacteria.
【 授权许可】
2013 Duckney et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150325102007217.pdf | 431KB | download | |
Figure 3. | 48KB | Image | download |
Figure 2. | 31KB | Image | download |
Figure 1. | 39KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Wanke I, Steffen H, Christ C, Krismer B, Gotz F, Peschel A, Schaller M, Schittek B: Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol 2011, 131:382-390.
- [2]Grange PA, Chereau C, Raingeaud J, Nicco C, Weill B, Dupin N, Batteux F: Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog 2009, 5:e1000527.
- [3]Pivarcsi A, Nagy I, Kemeny L: Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev 2005, 1:29-42.
- [4]Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL: Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol 2010, 130:192-200.
- [5]Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, Ryan AF, Di Nardo A, Gallo RL: Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 2010, 130:2211-2221.
- [6]Capone KA, Dowd SE, Stamatas GN, Nikolovski J: Diversity of the human skin microbiome early in life. J Invest Dermatol 2011, 131:2026-2032.
- [7]Marchini G, Nelson A, Edner J, Lonne-Rahm S, Stavreus-Evers A, Hultenby K: Erythema toxicum neonatorum is an innate immune response to commensal microbes penetrated into the skin of the newborn infant. Pediatr Res 2005, 58:613-616.
- [8]Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, et al.: Compartmentalized control of skin immunity by resident commensals. Science 2012, 337:1115-1119.
- [9]Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, et al.: Topographical and temporal diversity of the human skin microbiome. Science 2009, 324:1190-1192.
- [10]Henderson CA, Taylor J, Cunliffe WJ: Sebum excretion rates in mothers and neonates. Br J Dermatol 2000, 142:110-111.
- [11]Nikolovski J, Stamatas GN, Kollias N, Wiegand BC: Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol 2008, 128:1728-1736.
- [12]Hoeger PH, Enzmann CC: Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol 2002, 19:256-262.
- [13]Charles AJ: Superficial cutaneous fungal infections in tropical countries. Dermatol Ther 2009, 22:550-559.
- [14]Bruggemann H: Insights in the pathogenic potential of Propionibacterium acnes from its complete genome. Semin Cutan Med Surg 2005, 24:67-72.
- [15]Kong HH: Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med 2011, 17:320-328.
- [16]Balci DD, Duran N, Ozer B, Gunesacar R, Onlen Y, Yenin JZ: High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. Eur J Dermatol 2009, 19:238-242.
- [17]Cogen AL, Nizet V, Gallo RL: Skin microbiota: a source of disease or defence? Br J Dermatol 2008, 158:442-455.
- [18]Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC: Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol 2010, 27:125-131.
- [19]Jarrousse V, Castex-Rizzi N, Khammari A, Charveron M, Dreno B: Modulation of integrins and filaggrin expression by Propionibacterium acnes extracts on keratinocytes. Arch Dermatol Res 2007, 299:441-447.
- [20]Akaza N, Akamatsu H, Kishi M, Mizutani H, Ishii I, Nakata S, Matsunaga K: Effects of Propionibacterium acnes on various mRNA expression levels in normal human epidermal keratinocytes in vitro. J Dermatol 2009, 36:213-223.
- [21]Coquette A, Berna N, Vandenbosch A, Rosdy M, De Wever B, Poumay Y: Analysis of interleukin-1alpha (IL-1alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol In Vitro 2003, 17:311-321.
- [22]Reichel M, Heisig P, Kampf G: Identification of variables for aerobic bacterial density at clinically relevant skin sites. J Hosp Infect 2011, 78:5-10.
- [23]Hanakawa Y, Schechter NM, Lin C, Garza L, Li H, Yamaguchi T, Fudaba Y, Nishifuji K, Sugai M, Amagai M, Stanley JR: Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome. J Clin Invest 2002, 110:53-60.
- [24]Eckert RL, Sturniolo MT, Broome AM, Ruse M, Rorke EA: Transglutaminase function in epidermis. J Invest Dermatol 2005, 124:481-492.
- [25]Sandilands A, Sutherland C, Irvine AD, McLean WH: Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 2009, 122:1285-1294.
- [26]de Koning HD, van den Bogaard EH, Bergboer JG, Kamsteeg M, van Vlijmen-Willems IM, Hitomi K, Henry J, Simon M, Takashita N, Ishida-Yamamoto A, et al.: Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. Br J Dermatol 2012, 166:1245-1254.
- [27]Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, et al.: Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol 2008, 128:906-916.
- [28]Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, et al.: Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury. Nat Med 2009, 15:1377-1382.